ON THE OPTIMAL TRANSITION MATRIX FOR MARKOV CHAIN MONTE CARLO SAMPLING

被引:15
|
作者
Chen, Ting-Li [1 ]
Chen, Wei-Kuo [2 ]
Hwang, Chii-Ruey [2 ]
Pai, Hui-Ming [3 ]
机构
[1] Acad Sinica, Inst Stat Sci, Taipei 11529, Taiwan
[2] Acad Sinica, Inst Math, Taipei 11529, Taiwan
[3] Natl Taipei Univ, Dept Stat, Taipei 23741, Taiwan
关键词
Markov chain; Markov chain Monte Carlo; asymptotic variance; average-case analysis; worst-case analysis; rate of convergence; reversibility; nonreversibility;
D O I
10.1137/110832288
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let chi be a finite space and let pi be an underlying probability on chi. For any real-valued function f defined on chi, we are interested in calculating the expectation of f under pi. Let X-0, X-1,..., X-n,... be a Markov chain generated by some transition matrix P with invariant distribution pi. The time average, 1/n Sigma(n-1)(k=0) f(X-k), is a reasonable approximation to the expectation, E-pi[f(X)]. Which matrix P minimizes the asymptotic variance of 1/n Sigma(n-1)(k=0) f(X-k)? The answer depends on f. Rather than a worst-case analysis, we will identify the set of P's that minimize the average asymptotic variance, averaged with respect to a uniform distribution on f.
引用
收藏
页码:2743 / 2762
页数:20
相关论文
共 50 条
  • [1] Constructing optimal transition matrix for Markov chain Monte Carlo
    Wu, Sheng-Jhih
    Chu, Moody T.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 487 : 184 - 202
  • [2] Optimal Markov chain Monte Carlo sampling
    Chen, Ting-Li
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2013, 5 (05): : 341 - 348
  • [4] Markov Chain Monte Carlo on optimal adaptive sampling selections
    Chang-Tai Chao
    [J]. Environmental and Ecological Statistics, 2003, 10 : 129 - 151
  • [5] Markov Chain Monte Carlo sampling on multilocus genotypes
    Szydlowski, M.
    [J]. JOURNAL OF ANIMAL AND FEED SCIENCES, 2006, 15 (04): : 685 - 694
  • [6] A simple introduction to Markov Chain Monte–Carlo sampling
    Don van Ravenzwaaij
    Pete Cassey
    Scott D. Brown
    [J]. Psychonomic Bulletin & Review, 2018, 25 : 143 - 154
  • [7] OPTIMAL VARIANCE REDUCTION FOR MARKOV CHAIN MONTE CARLO
    Huang, Lu-Jing
    Liao, Yin-Ting
    Chen, Ting-Li
    Hwang, Chii-Ruey
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (04) : 2977 - 2996
  • [8] Respondent-driven sampling as Markov chain Monte Carlo
    Goel, Sharad
    Salganik, Matthew J.
    [J]. STATISTICS IN MEDICINE, 2009, 28 (17) : 2202 - 2229
  • [9] Markov Chain Monte Carlo posterior sampling with the Hamiltonian method
    Hanson, KM
    [J]. MEDICAL IMAGING: 2001: IMAGE PROCESSING, PTS 1-3, 2001, 4322 : 456 - 467
  • [10] Accelerating Markov Chain Monte Carlo sampling with diffusion models ☆
    Hunt-Smith, N. T.
    Melnitchouk, W.
    Ringer, F.
    Sato, N.
    Thomas, A. W.
    White, M. J.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2024, 296