ON THE OPTIMAL TRANSITION MATRIX FOR MARKOV CHAIN MONTE CARLO SAMPLING

被引:15
|
作者
Chen, Ting-Li [1 ]
Chen, Wei-Kuo [2 ]
Hwang, Chii-Ruey [2 ]
Pai, Hui-Ming [3 ]
机构
[1] Acad Sinica, Inst Stat Sci, Taipei 11529, Taiwan
[2] Acad Sinica, Inst Math, Taipei 11529, Taiwan
[3] Natl Taipei Univ, Dept Stat, Taipei 23741, Taiwan
关键词
Markov chain; Markov chain Monte Carlo; asymptotic variance; average-case analysis; worst-case analysis; rate of convergence; reversibility; nonreversibility;
D O I
10.1137/110832288
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let chi be a finite space and let pi be an underlying probability on chi. For any real-valued function f defined on chi, we are interested in calculating the expectation of f under pi. Let X-0, X-1,..., X-n,... be a Markov chain generated by some transition matrix P with invariant distribution pi. The time average, 1/n Sigma(n-1)(k=0) f(X-k), is a reasonable approximation to the expectation, E-pi[f(X)]. Which matrix P minimizes the asymptotic variance of 1/n Sigma(n-1)(k=0) f(X-k)? The answer depends on f. Rather than a worst-case analysis, we will identify the set of P's that minimize the average asymptotic variance, averaged with respect to a uniform distribution on f.
引用
收藏
页码:2743 / 2762
页数:20
相关论文
共 50 条
  • [41] Monte Carlo sampling of a Markov web
    Boulougouris, GC
    Frenkel, D
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2005, 1 (03) : 389 - 393
  • [42] Generalizing Informed Sampling for Asymptotically-Optimal Sampling-based Kinodynamic Planning via Markov Chain Monte Carlo
    Yi, Daqing
    Thakker, Rohan
    Gulino, Cole
    Salzman, Oren
    Srinivasa, Siddhartha
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 7063 - 7070
  • [43] Markov Chain Monte Carlo for Koopman-Based Optimal Control
    Hespanha, Joao
    Camsari, Kerem
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1901 - 1906
  • [44] Transition Path Sampling as Markov Chain Monte Carlo of Trajectories: Recent Algorithms, Software, Applications, and Future Outlook
    Bolhuis, Peter G.
    Swenson, David W. H.
    [J]. ADVANCED THEORY AND SIMULATIONS, 2021, 4 (04)
  • [45] ASYMPTOTICALLY INDEPENDENT MARKOV SAMPLING: A NEW MARKOV CHAIN MONTE CARLO SCHEME FOR BAYESIAN INFERENCE
    Beck, James L.
    Zuev, Konstantin M.
    [J]. INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2013, 3 (05) : 445 - 474
  • [46] Markov chain Monte Carlo sampling based terahertz holography image denoising
    Chen, Guanghao
    Li, Qi
    [J]. APPLIED OPTICS, 2015, 54 (14) : 4345 - 4351
  • [47] Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling
    Jasper A. Vrugt
    Cees G. H. Diks
    Martyn P. Clark
    [J]. Environmental Fluid Mechanics, 2008, 8 : 579 - 595
  • [48] Generalized poststratification and importance sampling for subsampled Markov chain Monte Carlo estimation
    Guha, Subharup
    MacEachern, Steven N.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (475) : 1175 - 1184
  • [49] Estimating the Earthquake Source Time Function by Markov Chain Monte Carlo Sampling
    Wojciech Dȩbski
    [J]. Pure and Applied Geophysics, 2008, 165 : 1263 - 1287
  • [50] Sample caching Markov chain Monte Carlo approach to boson sampling simulation
    Liu, Yong
    Xiong, Min
    Wu, Chunqing
    Wang, Dongyang
    Liu, Yingwen
    Ding, Jiangfang
    Huang, Anqi
    Fu, Xiang
    Qiang, Xiaogang
    Xu, Ping
    Deng, Mingtang
    Yang, Xuejun
    Wu, Junjie
    [J]. NEW JOURNAL OF PHYSICS, 2020, 22 (03):