A simple introduction to Markov Chain Monte-Carlo sampling

被引:337
|
作者
van Ravenzwaaij, Don [1 ,2 ]
Cassey, Pete [2 ]
Brown, Scott D. [2 ]
机构
[1] Univ Groningen, Dept Psychol, Grote Kruisstr 2-1,Heymans Bldg,Room H169, NL-9712 TS Groningen, Netherlands
[2] Univ Newcastle, Dept Psychol, Univ Dr,Aviat Bldg, Callaghan, NSW 2308, Australia
关键词
Markov Chain Monte-Carlo; MCMC; Bayesian inference; Tutorial; GIBBS SAMPLER; MODEL; MEMORY; CHOICE;
D O I
10.3758/s13423-016-1015-8
中图分类号
B841 [心理学研究方法];
学科分类号
040201 ;
摘要
Markov Chain Monte-Carlo (MCMC) is an increasingly popular method for obtaining information about distributions, especially for estimating posterior distributions in Bayesian inference. This article provides a very basic introduction to MCMC sampling. It describes what MCMC is, and what it can be used for, with simple illustrative examples. Highlighted are some of the benefits and limitations of MCMC sampling, as well as different approaches to circumventing the limitations most likely to trouble cognitive scientists.
引用
收藏
页码:143 / 154
页数:12
相关论文
共 50 条
  • [41] ENHANCED MIXTURE POPULATION MONTE CARLO VIA STOCHASTIC OPTIMIZATION AND MARKOV CHAIN MONTE CARLO SAMPLING
    El-Laham, Yousef
    Djuric, Petar M.
    Bugallo, Monica F.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5475 - 5479
  • [42] Sampling from complicated and unknown distributions Monte Carlo and Markov Chain Monte Carlo methods for redistricting
    Cho, Wendy K. Tam
    Liu, Yan Y.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 506 : 170 - 178
  • [43] MARKOV MONTE-CARLO UNAVAILABILITY ANALYSIS
    LEWIS, EE
    OLVEY, LA
    [J]. TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1984, 47 : 329 - 330
  • [44] Automated Parameter Blocking for Efficient Markov Chain Monte Carlo Sampling
    Turek, Daniel
    de Valpine, Perry
    Paciorek, Christopher J.
    Anderson-Bergman, Clifford
    [J]. BAYESIAN ANALYSIS, 2017, 12 (02): : 465 - 490
  • [45] Cool walking: A new Markov chain Monte Carlo sampling method
    Brown, S
    Head-Gordon, T
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2003, 24 (01) : 68 - 76
  • [46] On input selection with reversible jump Markov chain Monte Carlo sampling
    Sykacek, P
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 638 - 644
  • [47] Accelerated Markov chain Monte Carlo sampling in electrical capacitance tomography
    Watzenig, Daniel
    Neumayer, Markus
    Fox, Colin
    [J]. COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2011, 30 (06) : 1842 - 1854
  • [48] Occupancy Grid Mapping with Markov Chain Monte Carlo Gibbs Sampling
    Merali, Rehman S.
    Barfoot, Timothy D.
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 3183 - 3189
  • [49] A mixture representation of π with applications in Markov chain Monte Carlo and perfect sampling
    Hobert, JP
    Robert, CP
    [J]. ANNALS OF APPLIED PROBABILITY, 2004, 14 (03): : 1295 - 1305
  • [50] Comparison of Markov Chain Monte Carlo sampling algorithms in subset simulation
    Lan C.
    Xu Z.
    Ma J.
    Zhao X.
    Li H.
    [J]. Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2022, 55 (10): : 33 - 45and79