Automated Parameter Blocking for Efficient Markov Chain Monte Carlo Sampling

被引:13
|
作者
Turek, Daniel [1 ]
de Valpine, Perry [2 ]
Paciorek, Christopher J. [3 ]
Anderson-Bergman, Clifford [1 ]
机构
[1] Univ Calif Berkeley, 493 Evans Hall, Berkeley, CA 94704 USA
[2] Univ Calif Berkeley, 201 Wellman Hall, Berkeley, CA 94704 USA
[3] Univ Calif Berkeley, 495 Evans Hall, Berkeley, CA 94704 USA
来源
BAYESIAN ANALYSIS | 2017年 / 12卷 / 02期
基金
美国国家科学基金会;
关键词
MCMC; Metropolis-Hastings; block sampling; integrated autocorrelation time; mixing; NIMBLE; CONVERGENCE; HASTINGS; LIKELIHOOD;
D O I
10.1214/16-BA1008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Markov chain Monte Carlo (MCMC) sampling is an important and commonly used tool for the analysis of hierarchical models. Nevertheless, practitioners generally have two options for MCMC: utilize existing software that generates a black-box "one size fits all" algorithm, or the challenging (and time consuming) task of implementing a problem-specific MCMC algorithm. Either choice may result in inefficient sampling, and hence researchers have become accustomed to MCMC runtimes on the order of days (or longer) for large models. We propose an automated procedure to determine an efficient MCMC block-sampling algorithm for a given model and computing platform. Our procedure dynamically determines blocks of parameters for joint sampling that result in efficient MCMC sampling of the entire model. We test this procedure using a diverse suite of example models, and observe non-trivial improvements in MCMC efficiency for many models. Our procedure is the first attempt at such, and may be generalized to a broader space of MCMC algorithms. Our results suggest that substantive improvements in MCMC efficiency may be practically realized using our automated blocking procedure, or variants thereof, which warrants additional study and application.
引用
收藏
页码:465 / 490
页数:26
相关论文
共 50 条
  • [1] Efficient Markov chain Monte Carlo sampling for hierarchical hidden Markov models
    Daniel Turek
    Perry de Valpine
    Christopher J. Paciorek
    [J]. Environmental and Ecological Statistics, 2016, 23 : 549 - 564
  • [2] Efficient Markov chain Monte Carlo sampling for hierarchical hidden Markov models
    Turek, Daniel
    de Valpine, Perry
    Paciorek, Christopher J.
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2016, 23 (04) : 549 - 564
  • [3] Optimal Markov chain Monte Carlo sampling
    Chen, Ting-Li
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2013, 5 (05) : 341 - 348
  • [4] Markov Chain Monte Carlo sampling on multilocus genotypes
    Szydlowski, M.
    [J]. JOURNAL OF ANIMAL AND FEED SCIENCES, 2006, 15 (04): : 685 - 694
  • [5] A simple introduction to Markov Chain Monte–Carlo sampling
    Don van Ravenzwaaij
    Pete Cassey
    Scott D. Brown
    [J]. Psychonomic Bulletin & Review, 2018, 25 : 143 - 154
  • [6] An automated (Markov chain) Monte Carlo EM algorithm
    Levine, R
    Fan, JJ
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (05) : 349 - 359
  • [7] Efficient Underground Formation Characterization Using Transitional Markov Chain Monte Carlo Sampling
    Lu, Han
    Chen, Jiefu
    Wu, Xuqing
    Fu, Xin
    Khalil, Mohammad
    Safta, Cosmin
    Huang, Yueqin
    [J]. 2020 IEEE USNC-CNC-URSI NORTH AMERICAN RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2020, : 131 - 132
  • [8] Probabilistic Compute-in-Memory Design for Efficient Markov Chain Monte Carlo Sampling
    Fu, Yihan
    Shi, Daijing
    Fan, Anjunyi
    Yue, Wenshuo
    Yang, Yuchao
    Huang, Ru
    Yan, Bonan
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024, 71 (02) : 703 - 716
  • [9] Respondent-driven sampling as Markov chain Monte Carlo
    Goel, Sharad
    Salganik, Matthew J.
    [J]. STATISTICS IN MEDICINE, 2009, 28 (17) : 2202 - 2229
  • [10] Markov Chain Monte Carlo posterior sampling with the Hamiltonian method
    Hanson, KM
    [J]. MEDICAL IMAGING: 2001: IMAGE PROCESSING, PTS 1-3, 2001, 4322 : 456 - 467