Adaptive Markov chain Monte Carlo sampling and estimation in Mata

被引:21
|
作者
Baker, Matthew J. [1 ,2 ]
机构
[1] CUNY Hunter Coll, New York, NY 10021 USA
[2] CUNY, Grad Ctr, New York, NY USA
来源
STATA JOURNAL | 2014年 / 14卷 / 03期
关键词
st0354; amcmc(); amcmc_*(); bayesmixedlogit; mcmccqreg; Mata; Markov chain Monte Carlo; drawing from distributions; Bayesian estimation; mixed logit;
D O I
10.1177/1536867X1401400309
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
I describe algorithms for drawing from distributions using adaptive Markov chain Monte Carlo (MCMC) methods; I introduce a Mata function for performing adaptive MCMC, amcmc (); and I present a suite of functions, amcmc_*(), that allows an alternative implementation of adaptive MCMC. amcmc () and amcmc_*() can be used with models set up to work with Mata's moptimize () (see [M-5] moptimize()) or optimize () (see [M-5] optimize()) or with standalone functions. To show how the routines can be used in estimation problems, I give two examples of what Chernozhukov and Hong (2003, Journal of Econometrics 115: 293-346) refer to as quasi-Bayesian or Laplace-type estimators simulation-based estimators using MCMC sampling. In the first example, I illustrate basic ideas and show how a simple linear model can be fit by simulation. In the next example, I describe simulation-based estimation of a censored quantile regression model following Powell (1986, Journal of Econometrics 32: 143-155); the discussion describes the workings of the command mcmccqreg. I also present an example of how the routines can be used to draw from distributions without a normalizing constant and used in Bayesian estimation of a mixed logit model. This discussion introduces the command bayesmixedlogit.
引用
收藏
页码:623 / 661
页数:39
相关论文
共 50 条
  • [1] Markov chain Monte Carlo on optimal adaptive sampling selections
    Chao, CT
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2003, 10 (01) : 129 - 151
  • [2] Markov Chain Monte Carlo on optimal adaptive sampling selections
    Chang-Tai Chao
    [J]. Environmental and Ecological Statistics, 2003, 10 : 129 - 151
  • [3] Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling
    Blasone, Roberta-Serena
    Vrugt, Jasper A.
    Madsen, Henrik
    Rosbjerg, Dan
    Robinson, Bruce A.
    Zyvoloski, George A.
    [J]. ADVANCES IN WATER RESOURCES, 2008, 31 (04) : 630 - 648
  • [4] Optimal Markov chain Monte Carlo sampling
    Chen, Ting-Li
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2013, 5 (05) : 341 - 348
  • [5] Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters
    B Mathew
    A M Bauer
    P Koistinen
    T C Reetz
    J Léon
    M J Sillanpää
    [J]. Heredity, 2012, 109 : 235 - 245
  • [6] Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters
    Mathew, B.
    Bauer, A. M.
    Koistinen, P.
    Reetz, T. C.
    Leon, J.
    Sillanpaa, M. J.
    [J]. HEREDITY, 2012, 109 (04) : 235 - 245
  • [7] Generalized poststratification and importance sampling for subsampled Markov chain Monte Carlo estimation
    Guha, Subharup
    MacEachern, Steven N.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (475) : 1175 - 1184
  • [8] On adaptive Markov chain Monte Carlo algorithms
    Atchadé, YF
    Rosenthal, JS
    [J]. BERNOULLI, 2005, 11 (05) : 815 - 828
  • [9] Estimation via Markov chain Monte Carlo
    Spall, JC
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2003, 23 (02): : 34 - 45
  • [10] Estimation via Markov chain Monte Carlo
    Spall, JC
    [J]. PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 2559 - 2564