Fisher information ratio;
likelihood decomposition;
non-monotone missing data;
MULTIVARIATE NORMAL-DISTRIBUTION;
INCOMPLETE-DATA;
CONTINGENCY-TABLES;
SAMPLE-SURVEYS;
EM ALGORITHM;
PARAMETERS;
MODELS;
D O I:
10.1111/anzs.12040
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In this paper, we propose an estimation method when sample data are incomplete. We decompose the likelihood according to missing patterns and combine the estimators based on each likelihood weighting by the Fisher information ratio. This approach provides a simple way of estimating parameters, especially for non-monotone missing data. Numerical examples are presented to illustrate this method.
机构:
East China Normal Univ, KLATASDS MOE, Sch Stat, Shanghai 200241, Peoples R ChinaEast China Normal Univ, KLATASDS MOE, Sch Stat, Shanghai 200241, Peoples R China
Liu, Yukun
Li, Pengfei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3GI, CanadaEast China Normal Univ, KLATASDS MOE, Sch Stat, Shanghai 200241, Peoples R China
Li, Pengfei
Qin, Jing
论文数: 0引用数: 0
h-index: 0
机构:
NIAID, NIH, Bethesda, MD 20892 USAEast China Normal Univ, KLATASDS MOE, Sch Stat, Shanghai 200241, Peoples R China