FULL-SEMIPARAMETRIC-LIKELIHOOD-BASED INFERENCE FOR NON-IGNORABLE MISSING DATA

被引:2
|
作者
Liu, Yukun [1 ]
Li, Pengfei [2 ]
Qin, Jing [3 ]
机构
[1] East China Normal Univ, KLATASDS MOE, Sch Stat, Shanghai 200241, Peoples R China
[2] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3GI, Canada
[3] NIAID, NIH, Bethesda, MD 20892 USA
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Density ratio model; empirical likelihood; non-ignorable missing data; GOODNESS-OF-FIT; MEAN FUNCTIONALS; REGRESSION; NONRESPONSE; QUANTILE; MODELS; ADJUST; BIAS;
D O I
10.5705/ss.202019.0243
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Most existing studies on missing-data problems focus on the ignorable missing case, where the missing probability depends only on observable quantities. By contrast, research on nonignorable missing data problems is quite limited. The main difficulty in solving such problems is that the missing probability and the regression likelihood function are tangled together in the likelihood presentation. Furthermore, the model parameters may not be identifiable, even under strong parametric model assumptions. In this paper, we discuss a semiparametric model for data with nonignorable missing responses, and propose a maximum full semi-parametric likelihood estimation method. This method is an efficient combination of the parametric conditional likelihood and the marginal nonparametric biased sampling likelihood. We further show that the proposed estimators for the underly-ing parameters and the response mean are semiparametrically efficient. Extensive simulations and a real-data analysis demonstrate the advantage of the proposed method over competing methods.
引用
收藏
页码:271 / 292
页数:22
相关论文
共 50 条
  • [1] Empirical likelihood method for non-ignorable missing data problems
    Zhong Guan
    Jing Qin
    [J]. Lifetime Data Analysis, 2017, 23 : 113 - 135
  • [2] Empirical likelihood method for non-ignorable missing data problems
    Guan, Zhong
    Qin, Jing
    [J]. LIFETIME DATA ANALYSIS, 2017, 23 (01) : 113 - 135
  • [3] Empirical likelihood inference in mixture of semiparametric varying-coefficient models for longitudinal data with non-ignorable dropout
    Zhou, Xing-Cai
    Lin, Jin-Guan
    [J]. STATISTICS, 2014, 48 (03) : 668 - 684
  • [4] Longitudinal data analysis with non-ignorable missing data
    Tseng, Chi-hong
    Elashoff, Robert
    Li, Ning
    Li, Gang
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (01) : 205 - 220
  • [5] A Latent Variable Model with Non-Ignorable Missing Data
    Takahiro Hoshino
    [J]. Behaviormetrika, 2005, 32 (1) : 71 - 93
  • [6] Robust inference for longitudinal data analysis with non-ignorable and non-monotonic missing values
    Tseng, Chi-hong
    Elashoff, Robert
    Li, Ning
    Li, Gang
    [J]. STATISTICS AND ITS INTERFACE, 2012, 5 (04) : 479 - 490
  • [7] Pseudo-likelihood methods for longitudinal binary data with non-ignorable missing responses and covariates
    Parzen, Michael
    Lipsitz, Stuart R.
    Fitzmaurice, Garrett M.
    Ibrahim, Joseph G.
    Troxel, Andrea
    [J]. STATISTICS IN MEDICINE, 2006, 25 (16) : 2784 - 2796
  • [8] Marginal Partial Likelihood Approach in the Cox Model with Non-ignorable Missing Covariates
    Liu Huanbin
    Sun Liuquan
    [J]. 2009 IITA INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS ENGINEERING, PROCEEDINGS, 2009, : 541 - +
  • [9] A semiparametric nonlinear mixed-effects model with non-ignorable missing data and measurement errors for HIV viral data
    Liu, Wei
    Wu, Lang
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 53 (01) : 112 - 122
  • [10] RANK-BASED ESTIMATING EQUATION WITH NON-IGNORABLE MISSING RESPONSES VIA EMPIRICAL LIKELIHOOD
    Bindele, Huybrechts F.
    Zhao, Yichuan
    [J]. STATISTICA SINICA, 2018, 28 (04) : 1787 - 1820