SIMPLIFIED MAXIMUM LIKELIHOOD INFERENCE BASED ON THE LIKELIHOOD DECOMPOSITION FOR MISSING DATA

被引:0
|
作者
Jung, Sangah [1 ]
Park, Sangun [1 ]
机构
[1] Yonsei Univ, Dept Appl Stat, Seoul 120749, South Korea
基金
新加坡国家研究基金会;
关键词
Fisher information ratio; likelihood decomposition; non-monotone missing data; MULTIVARIATE NORMAL-DISTRIBUTION; INCOMPLETE-DATA; CONTINGENCY-TABLES; SAMPLE-SURVEYS; EM ALGORITHM; PARAMETERS; MODELS;
D O I
10.1111/anzs.12040
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose an estimation method when sample data are incomplete. We decompose the likelihood according to missing patterns and combine the estimators based on each likelihood weighting by the Fisher information ratio. This approach provides a simple way of estimating parameters, especially for non-monotone missing data. Numerical examples are presented to illustrate this method.
引用
收藏
页码:271 / 283
页数:13
相关论文
共 50 条
  • [21] Coalescent-based, maximum likelihood inference in phylogeography
    Templeton, Alan R.
    MOLECULAR ECOLOGY, 2010, 19 (03) : 431 - 435
  • [22] Maximum likelihood estimation for dynamic factor models with missing data
    Jungbacker, B.
    Koopman, S. J.
    van der Wel, M.
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2011, 35 (08): : 1358 - 1368
  • [23] Marginal maximum likelihood estimation of SAR models with missing data
    Suesse, Thomas
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 120 : 98 - 110
  • [24] A Primer on Maximum Likelihood Algorithms Available for Use With Missing Data
    Enders, Craig K.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2001, 8 (01) : 128 - 141
  • [25] Maximum-likelihood registration of range images with missing data
    Sharp, Gregory C.
    Lee, Sang W.
    Wehe, David K.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (01) : 120 - 130
  • [26] Consequences of Model Misspecification for Maximum Likelihood Estimation with Missing Data
    Golden, Richard M.
    Henley, Steven S.
    White, Halbert
    Kashner, T. Michael
    ECONOMETRICS, 2019, 7 (03)
  • [27] MAXIMUM LIKELIHOOD INFERENCE FOR MULTIPLE-REGRESSION WITH MISSING VALUES - SIMULATION STUDY
    LITTLE, RJA
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1979, 41 (01): : 76 - 87
  • [28] Simplified pseudo-maximum likelihood data estimation algorithm
    Sadjadpour, HR
    Weber, CL
    THIRTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1997, : 435 - 439
  • [29] Simplified maximum likelihood classification for hyperspectral data in cluster space
    Jia, XP
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 2578 - 2580
  • [30] MAXIMUM-LIKELIHOOD INFERENCE FROM SAMPLE SURVEY DATA
    BRECKLING, JU
    CHAMBERS, RL
    DORFMAN, AH
    TAM, SM
    WELSH, AH
    INTERNATIONAL STATISTICAL REVIEW, 1994, 62 (03) : 349 - 363