IMPROVING TUNNELING SIMULATION USING BAYESIAN UPDATING AND HIDDEN MARKOV CHAINS

被引:0
|
作者
Werner, Michael [1 ]
Ji, Wenying [1 ]
AbouRizk, Simaan [1 ]
机构
[1] Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PROBABILISTIC FUNCTIONS; PREDICTION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Ground conditions remain an uncertain factor in tunneling projects, complicating the ability of practitioners to reliably estimate project productivity and, in turn, duration. This study proposes a Bayesian-based approach to incorporate real-time project data into simulation-based ground prediction models to improve prediction accuracy. Changes in ground conditions are modeled using a Hidden Markov Model, which is updated with actual project data using the Baum-Welch algorithm. The prediction model is then incorporated in Simphony. NET to enhance simulation of tunneling construction operations. A case study conducted in Edmonton, Canada, demonstrates that the proposed approach is capable of incorporating real-time data in a manner that resulted in enhanced duration prediction accuracy.
引用
收藏
页码:3930 / 3940
页数:11
相关论文
共 50 条
  • [31] Unsupervised restoration of hidden nonstationary Markov chains using evidential priors
    Lanchantin, P
    Pieczynski, W
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (08) : 3091 - 3098
  • [32] Unsupervised segmentation of multisensor images using generalized Hidden Markov Chains
    Giordana, N
    Pieczynski, W
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL III, 1996, : 987 - 990
  • [33] Improving Time Series Classification Using Hidden Markov Models
    Esmael, Bilal
    Arnaout, Arghad
    Fruhwirth, Rudolf K.
    Thonhauser, Gerhard
    2012 12TH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS (HIS), 2012, : 502 - 507
  • [34] Diagnostic tools for evaluating and updating hidden Markov models
    McCane, B
    Caelli, T
    PATTERN RECOGNITION, 2004, 37 (07) : 1325 - 1337
  • [35] PERFECT SAMPLING FOR NONHOMOGENEOUS MARKOV CHAINS AND HIDDEN MARKOV MODELS
    Whiteley, Nick
    Lee, Anthony
    ANNALS OF APPLIED PROBABILITY, 2016, 26 (05): : 3044 - 3077
  • [36] Simulation of Tennis Behaviour Using Finite Markov Chains
    Rothe, F.
    Lames, M.
    IFAC PAPERSONLINE, 2022, 55 (20): : 606 - 611
  • [37] Bayesian basecalling for DNA sequence analysis using hidden Markov models
    Liang, Kuo-ching
    Wang, Xiaodong
    Anastassiou, Dimitris
    2006 40TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1-4, 2006, : 1599 - 1604
  • [38] ARL Criterion in Bayesian Process Control using Hidden Markov Model
    Jiang, Rui
    Makis, Viliam
    2009 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-4, 2009, : 228 - 232
  • [39] HYBRID APPROACH TO SPEECH RECOGNITION USING HIDDEN MARKOV-MODELS AND MARKOV-CHAINS
    DAI, J
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 1994, 141 (05): : 273 - 279
  • [40] Bayesian restoration of ion channel records using hidden Markov models
    Rosales, R
    Stark, JA
    Fitzgerald, WJ
    Hladky, SB
    BIOPHYSICAL JOURNAL, 2001, 80 (03) : 1088 - 1103