Unsupervised restoration of hidden nonstationary Markov chains using evidential priors

被引:37
|
作者
Lanchantin, P [1 ]
Pieczynski, W [1 ]
机构
[1] Inst Natl Telecommun, GET INT, Dept CITI, CNRS UMR 5157, F-91011 Evry, France
关键词
Bayesian restoration; Dempster-Shafer fusion; expectation-maximization algorithm; Hidden Markov chains; nonstationary Markov chain restoration; parameter estimation; theory of evidence;
D O I
10.1109/TSP.2005.851131
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the problem of unsupervised Bayesian hidden Markov chain restoration. When the hidden chain is stationary, the classical "Hidden Markov Chain" (HMC) model is quite efficient, and associated unsupervised Bayesian restoration methods using the "Expectation-Maximization" (EM) algorithm work well. When the hidden chain is non stationary, on the other hand, the unsupervised restoration results using the HMC model can be poor, due to a bad match between the real and estimated models. The novelty of this paper is to offer a more appropriate model for hidden nonstationary Markov chains, via the theory of evidence. Using recent results relating to Triplet Markov Chains (TMCs), we show, via simulations, that the classical restoration results can be improved by the use of the theory of evidence and Dempster-Shafer fusion. The latter improvement is performed in an entirely unsupervised way using an original parameter estimation method. Some application examples to unsupervised image segmentation are also provided.
引用
收藏
页码:3091 / 3098
页数:8
相关论文
共 50 条
  • [1] UNSUPERVISED SEGMENTATION OF NONSTATIONARY PAIRWISE MARKOV CHAINS USING EVIDENTIAL PRIORS
    Boudaren, Mohamed El Yazid
    Monfrini, Emmanuel
    Pieczynski, Wojciech
    [J]. 2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 2243 - 2247
  • [2] Unsupervised signal restoration using hidden Markov chains with copulas
    Brunel, N
    Pieczynski, W
    [J]. SIGNAL PROCESSING, 2005, 85 (12) : 2304 - 2315
  • [3] Unsupervised Segmentation of Nonstationary Data using Triplet Markov Chains
    Boudaren, Mohamed El Yazid
    Monfrini, Emmanuel
    Bey, Kadda Beghdad
    Habbouchi, Ahmed
    Pieczynski, Wojciech
    [J]. ICEIS: PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS - VOL 1, 2017, : 405 - 414
  • [4] Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields
    Fjortoft, R
    Delignon, Y
    Pieczynski, W
    Sigelle, M
    Tupin, F
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (03): : 675 - 686
  • [5] Unsupervised signal restoration using copulas and pairwise Markov chains
    Brunel, N
    Pieczynski, W
    [J]. PROCEEDINGS OF THE 2003 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING, 2003, : 102 - 105
  • [6] Unsupervised segmentation of multisensor images using generalized Hidden Markov Chains
    Giordana, N
    Pieczynski, W
    [J]. INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL III, 1996, : 987 - 990
  • [7] Iterative image restoration using nonstationary priors
    Vera, Esteban
    Vega, Miguel
    Molina, Rafael
    Katsaggelos, Aggelos K.
    [J]. APPLIED OPTICS, 2013, 52 (10) : D102 - D110
  • [8] Triplet Markov Chains in hidden signal restoration
    Pieczynski, W
    Hulard, C
    Veit, T
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VIII, 2003, 4885 : 58 - 68
  • [9] On Evidential Markov Chains
    Soubaras, Helene
    [J]. FOUNDATIONS OF REASONING UNDER UNCERTAINTY, 2010, 249 : 247 - 264
  • [10] Unsupervised Segmentation of SAR Images Using Gaussian Mixture-Hidden Evidential Markov Fields
    Boudaren, Mohamed El Yazid
    An, Lin
    Pieczynski, Wojciech
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) : 1865 - 1869