IMPROVING TUNNELING SIMULATION USING BAYESIAN UPDATING AND HIDDEN MARKOV CHAINS

被引:0
|
作者
Werner, Michael [1 ]
Ji, Wenying [1 ]
AbouRizk, Simaan [1 ]
机构
[1] Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PROBABILISTIC FUNCTIONS; PREDICTION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Ground conditions remain an uncertain factor in tunneling projects, complicating the ability of practitioners to reliably estimate project productivity and, in turn, duration. This study proposes a Bayesian-based approach to incorporate real-time project data into simulation-based ground prediction models to improve prediction accuracy. Changes in ground conditions are modeled using a Hidden Markov Model, which is updated with actual project data using the Baum-Welch algorithm. The prediction model is then incorporated in Simphony. NET to enhance simulation of tunneling construction operations. A case study conducted in Edmonton, Canada, demonstrates that the proposed approach is capable of incorporating real-time data in a manner that resulted in enhanced duration prediction accuracy.
引用
收藏
页码:3930 / 3940
页数:11
相关论文
共 50 条
  • [21] Updating, transition constraints and possibilistic Markov chains
    Dubois, D
    Cyr, FDD
    Prade, H
    ADVANCES IN INTELLIGENT COMPUTING - IPMU '94, 1995, 945 : 263 - 272
  • [22] Updating, transition constraints and possibilistic markov chains
    Dubois, Didier
    Dupin de Saintcyr, Florence
    Prade, Henri
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 945 : 261 - 272
  • [23] Parameter estimation for hidden Markov chains
    Archer, GEB
    Titterington, DM
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 108 (1-2) : 365 - 390
  • [24] Approximate realization of hidden Markov chains
    Finesso, L
    Spreij, P
    PROCEEDINGS OF 2002 IEEE INFORMATION THEORY WORKSHOP, 2002, : 90 - 93
  • [25] Bayesian classification of Hidden Markov Models
    Kehagias, A
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (05) : 25 - 43
  • [26] Bayesian Sensing Hidden Markov Models
    Saon, George
    Chien, Jen-Tzung
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2012, 20 (01): : 43 - 54
  • [27] Improving Bayesian Model Averaging for Ensemble Flood Modeling Using Multiple Markov Chains Monte Carlo Sampling
    Huang, Tao
    Merwade, Venkatesh
    WATER RESOURCES RESEARCH, 2023, 59 (10)
  • [28] Bayesian test of homogeneity for Markov chains
    Dupuis, JA
    STATISTICS & PROBABILITY LETTERS, 1997, 31 (04) : 333 - 338
  • [29] Bayesian analysis for reversible Markov chains
    Diaconis, Persi
    Rolles, Silke W. W.
    ANNALS OF STATISTICS, 2006, 34 (03): : 1270 - 1292
  • [30] Bayesian analysis for finite Markov chains
    Bhat, BR
    Badade, MN
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 81 (02) : 335 - 348