IMPROVING TUNNELING SIMULATION USING BAYESIAN UPDATING AND HIDDEN MARKOV CHAINS

被引:0
|
作者
Werner, Michael [1 ]
Ji, Wenying [1 ]
AbouRizk, Simaan [1 ]
机构
[1] Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PROBABILISTIC FUNCTIONS; PREDICTION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Ground conditions remain an uncertain factor in tunneling projects, complicating the ability of practitioners to reliably estimate project productivity and, in turn, duration. This study proposes a Bayesian-based approach to incorporate real-time project data into simulation-based ground prediction models to improve prediction accuracy. Changes in ground conditions are modeled using a Hidden Markov Model, which is updated with actual project data using the Baum-Welch algorithm. The prediction model is then incorporated in Simphony. NET to enhance simulation of tunneling construction operations. A case study conducted in Edmonton, Canada, demonstrates that the proposed approach is capable of incorporating real-time data in a manner that resulted in enhanced duration prediction accuracy.
引用
收藏
页码:3930 / 3940
页数:11
相关论文
共 50 条
  • [41] Bayesian basecalling for DNA sequence analysis using hidden Markov models
    Liang, Kuo-ching
    Wang, Xiaodong
    Anastassiou, Dimitris
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2007, 4 (03) : 430 - 440
  • [42] Intrusion Detection System using Bayesian Network and Hidden Markov Model
    Devarakonda, Nagaraju
    Pamidi, Srinivasulu
    Kumari, Valli V.
    Govardhan, A.
    2ND INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION, CONTROL AND INFORMATION TECHNOLOGY (C3IT-2012), 2012, 4 : 506 - 514
  • [43] Bayesian updating with subset simulation using artificial neural networks
    Giovanis, Dimitris G.
    Papaioannou, Iason
    Straub, Daniel
    Papadopoulos, Vissarion
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 319 : 124 - 145
  • [44] Hidden Markov Bayesian texture segmentation using complex wavelet transform
    Sun, J
    Gu, D
    Zhang, S
    Chen, Y
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2004, 151 (03): : 215 - 223
  • [45] Updating Markov chains with an eye on Google's PageRank
    Langville, AN
    Meyer, CD
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2006, 27 (04) : 968 - 987
  • [46] Bayesian model selection for Markov, hidden Markov, and multinomial models
    Johansson, Mathias
    Olofsson, Tomas
    IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (02) : 129 - 132
  • [47] Improving models for student retention and graduation using Markov chains
    Tedeschi, Mason N.
    Hose, Tiana M.
    Mehlman, Emily K.
    Franklin, Scott
    Wong, Tony E.
    PLOS ONE, 2023, 18 (06):
  • [48] Tunneling and Metastability of Continuous Time Markov Chains
    J. Beltrán
    C. Landim
    Journal of Statistical Physics, 2010, 140 : 1065 - 1114
  • [49] Tunneling and Metastability of Continuous Time Markov Chains
    Beltran, J.
    Landim, C.
    JOURNAL OF STATISTICAL PHYSICS, 2010, 140 (06) : 1065 - 1114
  • [50] Applications of hidden Markov chains in image analysis
    Norwegian Computing Cent, Oslo, Norway
    Pattern Recognit, 4 (703-713):