A deep reinforcement transfer convolutional neural network for rolling bearing fault diagnosis

被引:34
|
作者
Wu, Zhenghong [1 ]
Jiang, Hongkai [1 ]
Liu, Shaowei [1 ]
Wang, Ruixin [1 ]
机构
[1] Northwestern Polytech Univ, Sch Civil Aviat, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Rolling bearing fault diagnosis; Deep reinforcement transfer convolution  neural network; Intelligent diagnosis agent; Parameter transfer learning; Deep Q-network; AUTOENCODER;
D O I
10.1016/j.isatra.2022.02.032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep neural networks highly depend on substantial labeled samples when identifying bearing fault. However, in some practical situations, it is very difficult to collect sufficient labeled samples, which limits the application of deep neural networks in practical engineering. Therefore, how to use limited labeled samples to complete fault diagnosis tasks is an urgent problem. In this paper, a deep reinforcement transfer convolutional neural network (DRTCNN) is developed to tackle the problem. Firstly, an intelligent diagnosis agent constructed by a convolutional neural network is trained to obtain maximum long-term cumulative rewards, which is characterized by the ability to autonomously learn the latent relationship between fault samples and corresponding labels. Secondly, the parameter transfer learning method is utilized to establish a target task agent of DRTCNN. Finally, limited labeled target domain fault samples and the training mechanism of deep Q-network are employed to train the target task agent for performing target diagnosis tasks. Two diagnosis cases are conducted to verify the effectiveness of the proposed method when only limited labeled target domain fault samples are available.(c) 2022 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:505 / 524
页数:20
相关论文
共 50 条
  • [41] Rolling bearing fault diagnosis using enhanced convolutional neural network with compressed sensing
    Liang, Tianchen
    Wang, Jiayao
    Wang, Haoyu
    Wu, Shuaipeng
    2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 148 - 152
  • [42] Rolling bearing fault convolutional neural network diagnosis method based on casing signal
    Zhang, Xiangyang
    Chen, Guo
    Hao, Tengfei
    He, Zhiyuan
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2020, 34 (06) : 2307 - 2316
  • [43] Fault diagnosis of rolling bearing based on an improved convolutional neural network using SFLA
    Li Y.
    Ma J.
    Jiang L.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (24): : 187 - 193
  • [44] Fault Diagnosis of Rolling Bearing Based on S-Transform and Convolutional Neural Network
    Wang Qingrong
    Yang Lei
    Wang Songsong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (22)
  • [45] Rolling element bearing fault diagnosis using convolutional neural network and vibration image
    Hoang, Duy-Tang
    Kang, Hee-Jun
    COGNITIVE SYSTEMS RESEARCH, 2019, 53 : 42 - 50
  • [46] Intelligent Diagnosis of Rolling Bearing Fault Based on Improved Convolutional Neural Network and LightGBM
    Xu, Yanwei
    Cai, Weiwei
    Wang, Liuyang
    Xie, Tancheng
    SHOCK AND VIBRATION, 2021, 2021
  • [47] Convolutional neural network diagnosis method of rolling bearing fault based on casing signal
    Zhang X.
    Chen G.
    Hao T.
    He Z.
    Li X.
    Cheng Z.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2019, 34 (12): : 2729 - 2737
  • [48] Deep Convolutional Neural Network Using Transfer Learning for Fault Diagnosis
    Zhang, Dong
    Zhou, Taotao
    IEEE ACCESS, 2021, 9 : 43889 - 43897
  • [49] An improved gated convolutional neural network for rolling bearing fault diagnosis with imbalanced data
    Xi, Changsheng
    Yang, Jie
    Liang, Xiaoxia
    Ramli, Rahizar Bin
    Tian, Shaoning
    Feng, Guojin
    Zhen, Dong
    INTERNATIONAL JOURNAL OF HYDROMECHATRONICS, 2023, 6 (02) : 108 - 132
  • [50] Efficient federated convolutional neural network with information fusion for rolling bearing fault diagnosis
    Zhang, Zehui
    Xu, Xiaobin
    Gong, Wenfeng
    Chen, Yuwang
    Gao, Haibo
    CONTROL ENGINEERING PRACTICE, 2021, 116