A deep reinforcement transfer convolutional neural network for rolling bearing fault diagnosis

被引:34
|
作者
Wu, Zhenghong [1 ]
Jiang, Hongkai [1 ]
Liu, Shaowei [1 ]
Wang, Ruixin [1 ]
机构
[1] Northwestern Polytech Univ, Sch Civil Aviat, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Rolling bearing fault diagnosis; Deep reinforcement transfer convolution  neural network; Intelligent diagnosis agent; Parameter transfer learning; Deep Q-network; AUTOENCODER;
D O I
10.1016/j.isatra.2022.02.032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep neural networks highly depend on substantial labeled samples when identifying bearing fault. However, in some practical situations, it is very difficult to collect sufficient labeled samples, which limits the application of deep neural networks in practical engineering. Therefore, how to use limited labeled samples to complete fault diagnosis tasks is an urgent problem. In this paper, a deep reinforcement transfer convolutional neural network (DRTCNN) is developed to tackle the problem. Firstly, an intelligent diagnosis agent constructed by a convolutional neural network is trained to obtain maximum long-term cumulative rewards, which is characterized by the ability to autonomously learn the latent relationship between fault samples and corresponding labels. Secondly, the parameter transfer learning method is utilized to establish a target task agent of DRTCNN. Finally, limited labeled target domain fault samples and the training mechanism of deep Q-network are employed to train the target task agent for performing target diagnosis tasks. Two diagnosis cases are conducted to verify the effectiveness of the proposed method when only limited labeled target domain fault samples are available.(c) 2022 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:505 / 524
页数:20
相关论文
共 50 条
  • [11] Fault diagnosis of rolling bearing based on deep convolutional neural network and gated recurrent unit
    Zhou, Zhexin
    Wang, Hao
    LI, Zhuoxian
    Chen, Wei
    JOURNAL OF ADVANCED MECHANICAL DESIGN SYSTEMS AND MANUFACTURING, 2023, 17 (02)
  • [12] A Rolling Bearing Fault Diagnosis Method Based on Switchable Normalization and a Deep Convolutional Neural Network
    Han, Xiaoyu
    Cao, Yunpeng
    Luan, Junqi
    Ao, Ran
    Feng, Weixing
    Li, Shuying
    MACHINES, 2023, 11 (02)
  • [13] Application of convolutional neural network and kurtosis in fault diagnosis of rolling bearing
    Li J.
    Liu Y.
    Yu Y.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2019, 34 (11): : 2423 - 2431
  • [14] Rolling Bearing Fault Diagnosis based on Continuous Wavelet Transform and Transfer Convolutional Neural Network
    Lai, Yuehua
    Chen, Jianxun
    Wang, Ganlong
    Wang, Zeshen
    Miao, Pu
    2021 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, INFORMATION AND COMMUNICATION ENGINEERING, 2021, 11933
  • [15] A Fault Diagnosis Method of Rolling Bearing Based on Convolutional Neural Network
    Zhang, Bangcheng
    Gao, Shuo
    Hu, Guanyu
    Gao, Zhi
    Zhao, Yadong
    Du, Jianzhuang
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4709 - 4713
  • [16] Rolling Bearing Fault Diagnosis Based on GWVD and Convolutional Neural Network
    Lv, Xiaoxuan
    Li, Hui
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT V, 2023, 14090 : 514 - 523
  • [17] Rolling Bearing Fault Diagnosis Based on a Synchrosqueezing Wavelet Transform and a Transfer Residual Convolutional Neural Network
    Zhai, Zihao
    Luo, Liyan
    Chen, Yuhan
    Zhang, Xiaoguo
    SENSORS, 2025, 25 (02)
  • [18] Research on fault diagnosis of rolling bearing based on lightweight convolutional neural network
    Zhang, Xiaochen
    Li, Hanwen
    Meng, Weiying
    Liu, Yaofeng
    Zhou, Peng
    He, Cai
    Zhao, Qingbo
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (10)
  • [19] Multiscale convolutional neural network and decision fusion for rolling bearing fault diagnosis
    Lv, Defeng
    Wang, Huawei
    Che, Changchang
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2021, 73 (03) : 516 - 522
  • [20] Rolling Bearing Real Time Fault Diagnosis Using Convolutional Neural Network
    Zhou, Funa
    Zhou, Wei
    Chen, Danmin
    Wen, Chenglin
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 377 - 382