A deep reinforcement transfer convolutional neural network for rolling bearing fault diagnosis

被引:34
|
作者
Wu, Zhenghong [1 ]
Jiang, Hongkai [1 ]
Liu, Shaowei [1 ]
Wang, Ruixin [1 ]
机构
[1] Northwestern Polytech Univ, Sch Civil Aviat, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
Rolling bearing fault diagnosis; Deep reinforcement transfer convolution  neural network; Intelligent diagnosis agent; Parameter transfer learning; Deep Q-network; AUTOENCODER;
D O I
10.1016/j.isatra.2022.02.032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep neural networks highly depend on substantial labeled samples when identifying bearing fault. However, in some practical situations, it is very difficult to collect sufficient labeled samples, which limits the application of deep neural networks in practical engineering. Therefore, how to use limited labeled samples to complete fault diagnosis tasks is an urgent problem. In this paper, a deep reinforcement transfer convolutional neural network (DRTCNN) is developed to tackle the problem. Firstly, an intelligent diagnosis agent constructed by a convolutional neural network is trained to obtain maximum long-term cumulative rewards, which is characterized by the ability to autonomously learn the latent relationship between fault samples and corresponding labels. Secondly, the parameter transfer learning method is utilized to establish a target task agent of DRTCNN. Finally, limited labeled target domain fault samples and the training mechanism of deep Q-network are employed to train the target task agent for performing target diagnosis tasks. Two diagnosis cases are conducted to verify the effectiveness of the proposed method when only limited labeled target domain fault samples are available.(c) 2022 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:505 / 524
页数:20
相关论文
共 50 条
  • [31] Fault Diagnosis of Rolling Bearing Based on Secondary Data Enhancement and Deep Convolutional Network
    Meng Z.
    Guan Y.
    Pan Z.
    Sun D.
    Fan F.
    Cao L.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (23): : 106 - 115
  • [32] VKCNN: An interpretable variational kernel convolutional neural network for rolling bearing fault diagnosis
    Chen, Guangyi
    Tang, Gang
    Zhu, Zhixiao
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [33] Research on rolling bearing compound fault diagnosis based on AMOMCKD and convolutional neural network
    Runfang Hao
    Yunpeng Bai
    Kun Yang
    Yongqiang Cheng
    Shengjun Chang
    Scientific Reports, 15 (1)
  • [34] Rolling bearing fault diagnosis based on feature fusion with parallel convolutional neural network
    Liang, Mingxuan
    Cao, Pei
    Tang, J.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 112 (3-4): : 819 - 831
  • [35] Fault Diagnosis of Rolling Bearing Using Wireless Sensor Networks and Convolutional Neural Network
    Hou, Liqun
    Li, Zijing
    Qu, Huaisheng
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2020, 16 (11) : 32 - 44
  • [36] Rolling Bearing Fault Diagnosis Based on Wavelet Packet Transform and Convolutional Neural Network
    Li, Guoqiang
    Deng, Chao
    Wu, Jun
    Chen, Zuoyi
    Xu, Xuebing
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [37] A fault diagnosis method based on improved parallel convolutional neural network for rolling bearing
    Xu, Tao
    Lv, Huan
    Lin, Shoujin
    Tan, Haihui
    Zhang, Qing
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2023, 237 (12) : 2759 - 2771
  • [38] Rolling bearing fault convolutional neural network diagnosis method based on casing signal
    Xiangyang Zhang
    Guo Chen
    Tengfei Hao
    Zhiyuan He
    Journal of Mechanical Science and Technology, 2020, 34 : 2307 - 2316
  • [39] Rolling Bearing Fault Diagnosis Based on Convolutional Neural Network and Support Vector Machine
    Yuan, Laohu
    Lian, Dongshan
    Kang, Xue
    Chen, Yuanqiang
    Zhai, Kejia
    IEEE ACCESS, 2020, 8 : 137395 - 137406
  • [40] Rolling bearing fault diagnosis based on feature fusion with parallel convolutional neural network
    Mingxuan Liang
    Pei Cao
    J. Tang
    The International Journal of Advanced Manufacturing Technology, 2021, 112 : 819 - 831