An improved gated convolutional neural network for rolling bearing fault diagnosis with imbalanced data

被引:17
|
作者
Xi, Changsheng [1 ]
Yang, Jie [1 ]
Liang, Xiaoxia [1 ]
Ramli, Rahizar Bin [2 ]
Tian, Shaoning [1 ]
Feng, Guojin [1 ]
Zhen, Dong [1 ]
机构
[1] Hebei Univ Technol, Sch Mech Engn, Tianjin 300401, Peoples R China
[2] Univ Malaya, Fac Engn, Dept Mech Engn, Kuala Lumpur 50603, Malaysia
基金
中国国家自然科学基金;
关键词
rolling bearings; fault diagnosis; imbalanced data; IGCNN; label-distribution-aware margin loss; DEEP; CLASSIFICATION; MACHINERY;
D O I
10.1504/IJHM.2023.130520
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
To improve the ability of the deep learning model to handle imbalanced data, a fault diagnosis method based on improved gated convolutional neural network (IGCNN) is proposed. Firstly, an improved gated convolution layer is proposed for feature extraction, with the batch normalisation (BN) layer applied to adjust the data distribution and enhance the generalisation performance of the model. Then, the feature learned by multiple gated convolution layers and pooling layers is fed to the fully connected layer for fault type identification. Finally, the label-distribution-aware margin (LDAM) loss function is employed to adjust the model being more sensitive to the minority class and mitigate the influence of imbalanced data on the model. Experimental validation is conducted using two bearing datasets. Results show that the proposed method is more robust than other fault diagnosis methods, with higher recognition accuracy in severely imbalanced dataset.
引用
收藏
页码:108 / 132
页数:26
相关论文
共 50 条
  • [1] Intelligent fault diagnosis based on improved convolutional neural network for small sample and imbalanced bearing data
    Liu, Xuetao
    Yang, Hongyan
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2024,
  • [2] Fault diagnosis of rolling bearing based on deep convolutional neural network and gated recurrent unit
    Zhou, Zhexin
    Wang, Hao
    LI, Zhuoxian
    Chen, Wei
    [J]. JOURNAL OF ADVANCED MECHANICAL DESIGN SYSTEMS AND MANUFACTURING, 2023, 17 (02):
  • [3] Fault diagnosis of rolling bearing based on an improved convolutional neural network using SFLA
    Li, Yibing
    Ma, Jianbo
    Jiang, Li
    [J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (24): : 187 - 193
  • [4] A fault diagnosis method based on improved parallel convolutional neural network for rolling bearing
    Xu, Tao
    Lv, Huan
    Lin, Shoujin
    Tan, Haihui
    Zhang, Qing
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2023, 237 (12) : 2759 - 2771
  • [5] Intelligent Diagnosis of Rolling Bearing Fault Based on Improved Convolutional Neural Network and LightGBM
    Xu, Yanwei
    Cai, Weiwei
    Wang, Liuyang
    Xie, Tancheng
    [J]. SHOCK AND VIBRATION, 2021, 2021
  • [6] A review on convolutional neural network in rolling bearing fault diagnosis
    Li, Xin
    Ma, Zengqiang
    Yuan, Zonghao
    Mu, Tianming
    Du, Guoxin
    Liang, Yan
    Liu, Jingwen
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (07)
  • [7] An improved multi-scale branching convolutional neural network for rolling bearing fault diagnosis
    Xu, Meng
    Shi, Yaowei
    Deng, Minqiang
    Liu, Yang
    Ding, Xue
    Deng, Aidong
    [J]. PLOS ONE, 2023, 18 (09):
  • [8] A Fault Diagnosis Method of Rolling Bearing Based on Improved Recurrence Plot and Convolutional Neural Network
    Liu, Xiaoping
    Xia, Lijian
    Shi, Jian
    Zhang, Lijie
    Bai, Linying
    Wang, Shaoping
    [J]. IEEE SENSORS JOURNAL, 2023, 23 (10) : 10767 - 10775
  • [9] A Fault Diagnosis Method of Rolling Bearing Based on Convolutional Neural Network
    Zhang, Bangcheng
    Gao, Shuo
    Hu, Guanyu
    Gao, Zhi
    Zhao, Yadong
    Du, Jianzhuang
    [J]. 2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4709 - 4713
  • [10] An adaptive deep convolutional neural network for rolling bearing fault diagnosis
    Wang Fuan
    Jiang Hongkai
    Shao Haidong
    Duan Wenjing
    Wu Shuaipeng
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (09)