Experiences with the Sparse Matrix-Vector Multiplication on a Many-core Processor

被引:1
|
作者
Pichel, Juan C. [1 ]
Rivera, Francisco F. [1 ]
机构
[1] Univ Santiago de Compostela, Ctr Invest Tecnol Informac CITIUS, Santiago De Compostela, Spain
关键词
many-core; sparse matrix; performance; power efficiency;
D O I
10.1109/IPDPSW.2012.17
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Industry is moving towards many-core processors, which are expected to consist of tens or even hundreds of cores. One of these future processors is the 48-core experimental processor Single-Chip Cloud Computer (SCC). The SCC was created by Intel Labs as a platform for many-core research. The characteristics of this system turns it into a big challenge for researchers in order to extract performance from such complex architecture. In this work we study and explore the behavior of an irregular application such as the Sparse Matrix-Vector multiplication (SpMV) on the SCC processor. An evaluation in terms of performance and power efficiency is provided. Our experiments give some key insights that can serve as guidelines for the understanding and optimization of the SpMV kernel on this architecture. Furthermore, a comparison of the SCC processor with several leading multicore processors and GPUs is performed.
引用
下载
收藏
页码:7 / 15
页数:9
相关论文
共 50 条
  • [41] No Zero Padded Sparse Matrix-Vector Multiplication on FPGAs
    Huang, Jiasen
    Ren, Junyan
    Yin, Wenbo
    Wang, Lingli
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (FPT), 2014, : 290 - 291
  • [42] Sparse Binary Matrix-Vector Multiplication on Neuromorphic Computers
    Schuman, Catherine D.
    Kay, Bill
    Date, Prasanna
    Kannan, Ramakrishnan
    Sao, Piyush
    Potok, Thomas E.
    2021 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2021, : 308 - 311
  • [43] Sparse Matrix-Vector Multiplication on a Reconfigurable Supercomputer with Application
    Dubois, David
    Dubois, Andrew
    Boorman, Thomas
    Connor, Carolyn
    Poole, Steve
    ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS, 2010, 3 (01)
  • [44] Optimization techniques for sparse matrix-vector multiplication on GPUs
    Maggioni, Marco
    Berger-Wolf, Tanya
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2016, 93-94 : 66 - 86
  • [45] Parallel Sparse Matrix-Vector Multiplication Using Accelerators
    Maeda, Hiroshi
    Takahashi, Daisuke
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2016, PT II, 2016, 9787 : 3 - 18
  • [46] Adaptive diagonal sparse matrix-vector multiplication on GPU
    Gao, Jiaquan
    Xia, Yifei
    Yin, Renjie
    He, Guixia
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2021, 157 : 287 - 302
  • [47] IMAGE EDITING BASED ON SPARSE MATRIX-VECTOR MULTIPLICATION
    Wang, Ying
    Yan, Hongping
    Pan, Chunhong
    Xiang, Shiming
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1317 - 1320
  • [48] High performance sparse matrix-vector multiplication on FPGA
    Zou, Dan
    Dou, Yong
    Guo, Song
    Ni, Shice
    IEICE ELECTRONICS EXPRESS, 2013, 10 (17):
  • [49] Acceleration of Sparse Matrix-Vector Multiplication by Region Traversal
    Simecek, I.
    ACTA POLYTECHNICA, 2008, 48 (04) : 8 - 15
  • [50] Parallel Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication Using Compressed Sparse Blocks
    Buluc, Aydin
    Fineman, Jeremy T.
    Frigo, Matteo
    Gilbert, John R.
    Leiserson, Charles E.
    SPAA'09: PROCEEDINGS OF THE TWENTY-FIRST ANNUAL SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, 2009, : 233 - 244