No Zero Padded Sparse Matrix-Vector Multiplication on FPGAs

被引:0
|
作者
Huang, Jiasen [1 ]
Ren, Junyan [1 ]
Yin, Wenbo [1 ]
Wang, Lingli [1 ]
机构
[1] Fudan Univ, State Key Lab ASIC & Syst, Shanghai 201203, Peoples R China
关键词
SMVM; no zero padded; Compressed Element Storage Format;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Sparse Matrix-Vector Multiplication (SpMxV) algorithms suffer heavy performance penalties due to irregular memory accesses. In this paper, we introduce a novel compressed element storage (CES) format, in which the additional data structures for indexing are abandoned, and each location associated with the non-zero element of the matrix is now indicated by the name of a variable multiplied by the corresponding element of the vector. To ensure fastest access and parallel access without data hazards, on-chip registers are used exclusively to replace the BRAM or off-chip DRAM/SRAM to hold all the SpMxV data. On-chip DSP resources are fully utilized so as to ensure a maximum number of multipliers concurrently working.
引用
收藏
页码:290 / 291
页数:2
相关论文
共 50 条
  • [1] Sparse matrix-vector multiplication design on FPGAs
    Sun, Junqing
    Peterson, Gregory
    Storaasli, Olaf
    [J]. FCCM 2007: 15TH ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, PROCEEDINGS, 2007, : 349 - +
  • [2] On the Performance and Energy Efficiency of Sparse Matrix-Vector Multiplication on FPGAs
    Mpakos, Panagiotis
    Papadopoulou, Nikela
    Alverti, Chloe
    Goumas, Georgios
    Koziris, Nectarios
    [J]. PARALLEL COMPUTING: TECHNOLOGY TRENDS, 2020, 36 : 624 - 633
  • [3] Sparse matrix-vector multiplication for Finite Element Method matrices on FPGAs
    El-Kurdi, Yousef
    Gross, Warren J.
    Giannacopoulos, Dennis
    [J]. FCCM 2006: 14TH ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, PROCEEDINGS, 2006, : 293 - +
  • [4] Optimized Data Reuse via Reordering for Sparse Matrix-Vector Multiplication on FPGAs
    Li, Shiqing
    Liu, Di
    Liu, Weichen
    [J]. 2021 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN (ICCAD), 2021,
  • [5] Sparse Matrix-Vector Multiplication on GPGPUs
    Filippone, Salvatore
    Cardellini, Valeria
    Barbieri, Davide
    Fanfarillo, Alessandro
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2017, 43 (04):
  • [6] GPU accelerated sparse matrix-vector multiplication and sparse matrix-transpose vector multiplication
    Tao, Yuan
    Deng, Yangdong
    Mu, Shuai
    Zhang, Zhenzhong
    Zhu, Mingfa
    Xiao, Limin
    Ruan, Li
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (14): : 3771 - 3789
  • [7] An I/O Bandwidth-Sensitive Sparse Matrix-Vector Multiplication Engine on FPGAs
    Sun, Song
    Monga, Madhu
    Jones, Phillip H.
    Zambreno, Joseph
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2012, 59 (01) : 113 - 123
  • [8] Vector ISA extension for sparse matrix-vector multiplication
    Vassiliadis, S
    Cotofana, S
    Stathis, P
    [J]. EURO-PAR'99: PARALLEL PROCESSING, 1999, 1685 : 708 - 715
  • [9] Node aware sparse matrix-vector multiplication
    Bienz, Amanda
    Gropp, William D.
    Olson, Luke N.
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2019, 130 : 166 - 178
  • [10] Sparse Matrix-Vector Multiplication on a Reconfigurable Supercomputer
    DuBois, David
    DuBois, Andrew
    Connor, Carolyn
    Poole, Steve
    [J]. PROCEEDINGS OF THE SIXTEENTH IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, 2008, : 239 - +