An I/O Bandwidth-Sensitive Sparse Matrix-Vector Multiplication Engine on FPGAs

被引:13
|
作者
Sun, Song [1 ]
Monga, Madhu [1 ]
Jones, Phillip H. [1 ]
Zambreno, Joseph [1 ]
机构
[1] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50010 USA
基金
美国国家科学基金会;
关键词
FPGA; reconfigurable computing; sparse matrix-vector multiplication; COMPUTATIONS;
D O I
10.1109/TCSI.2011.2161389
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse matrix-vector multiplication (SMVM) is a fundamental core of many high-performance computing applications, including information retrieval, medical imaging, and economic modeling. While the use of reconfigurable computing technology in a high-performance computing environment has shown recent promise in accelerating a wide variety of scientific applications, existing SMVM architectures on FPGA hardware have been limited in that they require either numerous pipeline stalls during computation (due to zero padding) or excessive input preprocessing during run-time. For large-scale sparse matrix scenarios, both of these shortcomings can result in unacceptable performance overheads, limiting the overall value of using FPGAs in a high-performance computing environment. In this paper, we present a scalable and efficient FPGA-based SMVM architecture which can handle arbitrary matrix sparsity patterns without excessive preprocessing or zero padding and can be dynamically expanded based on the available I/O bandwidth. Our experimental results using a commercial FPGA-based acceleration system demonstrate that our reconfigurable SMVM engine is highly efficient, with benchmark-dependent speedups over an optimized software implementation that range from 3.5x to 6.5x in terms of computation time.
引用
收藏
页码:113 / 123
页数:11
相关论文
共 50 条
  • [1] Sparse matrix-vector multiplication design on FPGAs
    Sun, Junqing
    Peterson, Gregory
    Storaasli, Olaf
    [J]. FCCM 2007: 15TH ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, PROCEEDINGS, 2007, : 349 - +
  • [2] No Zero Padded Sparse Matrix-Vector Multiplication on FPGAs
    Huang, Jiasen
    Ren, Junyan
    Yin, Wenbo
    Wang, Lingli
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (FPT), 2014, : 290 - 291
  • [3] On the Performance and Energy Efficiency of Sparse Matrix-Vector Multiplication on FPGAs
    Mpakos, Panagiotis
    Papadopoulou, Nikela
    Alverti, Chloe
    Goumas, Georgios
    Koziris, Nectarios
    [J]. PARALLEL COMPUTING: TECHNOLOGY TRENDS, 2020, 36 : 624 - 633
  • [4] Reducing Vector I/O for Faster GPU Sparse Matrix-Vector Multiplication
    Nguyen Quang Anh Pham
    Fan, Rui
    Wen, Yonggang
    [J]. 2015 IEEE 29TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2015, : 1043 - 1052
  • [5] Sparse matrix-vector multiplication for Finite Element Method matrices on FPGAs
    El-Kurdi, Yousef
    Gross, Warren J.
    Giannacopoulos, Dennis
    [J]. FCCM 2006: 14TH ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, PROCEEDINGS, 2006, : 293 - +
  • [6] A High Memory Bandwidth FPGA Accelerator for Sparse Matrix-Vector Multiplication
    Fowers, Jeremy
    Ovtcharov, Kalin
    Strauss, Karin
    Chung, Eric S.
    Stitt, Greg
    [J]. 2014 IEEE 22ND ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM 2014), 2014, : 36 - 43
  • [7] Optimized Data Reuse via Reordering for Sparse Matrix-Vector Multiplication on FPGAs
    Li, Shiqing
    Liu, Di
    Liu, Weichen
    [J]. 2021 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN (ICCAD), 2021,
  • [8] Sparse Matrix-Vector Multiplication on GPGPUs
    Filippone, Salvatore
    Cardellini, Valeria
    Barbieri, Davide
    Fanfarillo, Alessandro
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2017, 43 (04):
  • [9] GPU accelerated sparse matrix-vector multiplication and sparse matrix-transpose vector multiplication
    Tao, Yuan
    Deng, Yangdong
    Mu, Shuai
    Zhang, Zhenzhong
    Zhu, Mingfa
    Xiao, Limin
    Ruan, Li
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (14): : 3771 - 3789
  • [10] Vector ISA extension for sparse matrix-vector multiplication
    Vassiliadis, S
    Cotofana, S
    Stathis, P
    [J]. EURO-PAR'99: PARALLEL PROCESSING, 1999, 1685 : 708 - 715