Parallel Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication Using Compressed Sparse Blocks

被引:0
|
作者
Buluc, Aydin [1 ]
Fineman, Jeremy T.
Frigo, Matteo
Gilbert, John R. [1 ]
Leiserson, Charles E.
机构
[1] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
Compressed sparse blocks; compressed sparse columns; compressed sparse rows; matrix transpose; matrix-vector multiplication; multithreaded algorithm; parallelism; span; sparse matrix; storage format; work;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a storage format for sparse matrices, called compressed sparse blocks (CSB), which allows both Ax and A(x)(inverted perpendicular) to be computed efficiently in parallel, where A is an n x n sparse matrix with nnz >= n nonzeros and x is a dense n-vector. Our algorithms use Theta(nnz) work (serial running time) and Theta(root nlgn) span (critical-path length), yielding a parallelism of Theta(nnz/root nlgn), which is amply high for virtually any large matrix. The storage requirement for CSB is esssentially the same as that for the more-standard compressed-sparse-rows (CSR) format, for which computing Ax in parallel is easy but A(x)(inverted perpendicular) is difficult. Benchmark results indicate that on one processor, the CSB algorithms for Ax and A(x)(inverted perpendicular) run just as fast as the CSR algorithm for Ax, but the CSB algorithms also scale up linearly with processors until limited by off-chip memory bandwidth.
引用
收藏
页码:233 / 244
页数:12
相关论文
共 50 条
  • [1] Locality-Aware Parallel Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication on Many-Core Processors
    Karsavuran, M. Ozan
    Akbudak, Kadir
    Aykanat, Cevdet
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2016, 27 (06) : 1713 - 1726
  • [2] GPU accelerated sparse matrix-vector multiplication and sparse matrix-transpose vector multiplication
    Tao, Yuan
    Deng, Yangdong
    Mu, Shuai
    Zhang, Zhenzhong
    Zhu, Mingfa
    Xiao, Limin
    Ruan, Li
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (14): : 3771 - 3789
  • [3] Parallel Sparse Matrix-Vector Multiplication Using Accelerators
    Maeda, Hiroshi
    Takahashi, Daisuke
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2016, PT II, 2016, 9787 : 3 - 18
  • [4] Communication balancing in parallel sparse matrix-vector multiplication
    Bisseling, RH
    Meesen, W
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2005, 21 : 47 - 65
  • [5] Sparse Matrix-Vector Multiplication on GPGPUs
    Filippone, Salvatore
    Cardellini, Valeria
    Barbieri, Davide
    Fanfarillo, Alessandro
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2017, 43 (04):
  • [6] Heterogeneous sparse matrix-vector multiplication via compressed sparse row format
    Lane, Phillip Allen
    Booth, Joshua Dennis
    [J]. PARALLEL COMPUTING, 2023, 115
  • [7] Vector ISA extension for sparse matrix-vector multiplication
    Vassiliadis, S
    Cotofana, S
    Stathis, P
    [J]. EURO-PAR'99: PARALLEL PROCESSING, 1999, 1685 : 708 - 715
  • [8] Merge-based Parallel Sparse Matrix-Vector Multiplication
    Merrill, Duane
    Garland, Michael
    [J]. SC '16: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2016, : 678 - 689
  • [9] Towards a fast parallel sparse symmetric matrix-vector multiplication
    Geus, R
    Röllin, S
    [J]. PARALLEL COMPUTING, 2001, 27 (07) : 883 - 896
  • [10] SIMD Parallel Sparse Matrix-Vector and Transposed-Matrix-Vector Multiplication in DD Precision
    Hishinuma, Toshiaki
    Hasegawa, Hidehiko
    Tanaka, Teruo
    [J]. HIGH PERFORMANCE COMPUTING FOR COMPUTATIONAL SCIENCE - VECPAR 2016, 2017, 10150 : 21 - 34