Asymptotics and bootstrap for random-effects panel data transformation models

被引:1
|
作者
Su, Liangjun [1 ]
Yang, Zhenlin [1 ]
机构
[1] Singapore Management Univ, Sch Econ, 90 Stamford Rd, Singapore 178903, Singapore
关键词
Asymptotics; error components bootstrap; quasi-MLE; Transformed panels; random-effects; robust VC matrix estimation; POWER-TRANSFORMATIONS; RANK ESTIMATION; UNIFORM LAW; FAMILY;
D O I
10.1080/07474938.2015.1122235
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article investigates the asymptotic properties of quasi-maximum likelihood (QML) estimators for random-effects panel data transformation models where both the response and (some of) the covariates are subject to transformations for inducing normality, flexible functional form, homoskedasticity, and simple model structure. We develop a QML-type procedure for model estimation and inference. We prove the consistency and asymptotic normality of the QML estimators, and propose a simple bootstrap procedure that leads to a robust estimate of the variance-covariance (VC) matrix. Monte Carlo results reveal that the QML estimators perform well in finite samples, and that the gains by using the robust VC matrix estimate for inference can be enormous.
引用
收藏
页码:602 / 625
页数:24
相关论文
共 50 条
  • [31] Random-effects modeling of categorical response data
    Agresti, A
    Booth, JG
    Hobert, JP
    Caffo, B
    [J]. SOCIOLOGICAL METHODOLOGY 2000, VOL 30, 2000, 30 : 27 - 80
  • [32] A random-effects model for clustered circular data
    Rivest, Louis-Paul
    Kato, Shogo
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2019, 47 (04): : 712 - 728
  • [33] Bootstrap LM Tests for Spatial Dependence in Panel Data Models with Fixed Effects
    Bianling OU
    Zhihe LONG
    Wenqian LI
    [J]. Journal of Systems Science and Information, 2019, 7 (04) : 330 - 343
  • [34] Bootstrap inference for linear dynamic panel data models with individual fixed effects
    Goncalves, Silvia
    Kaffo, Maximilien
    [J]. JOURNAL OF ECONOMETRICS, 2015, 186 (02) : 407 - 426
  • [35] Nonlinear mixed-effects models for pharmacokinetic data analysis: assessment of the random-effects distribution
    Reza Drikvandi
    [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2017, 44 : 223 - 232
  • [36] A Framework for Random-Effects ROC Analysis: Biases with the Bootstrap and Other Variance Estimators
    Gallas, Brandon D.
    Bandos, Andriy
    Samuelson, Frank W.
    Wagner, Robert F.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (15) : 2586 - 2603
  • [37] Nonlinear mixed-effects models for pharmacokinetic data analysis: assessment of the random-effects distribution
    Drikvandi, Reza
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2017, 44 (03) : 223 - 232
  • [38] Generalized prediction intervals for treatment effects in random-effects models
    Al-Sarraj, Razaw
    von Bromssen, Claudia
    Forkman, Johannes
    [J]. BIOMETRICAL JOURNAL, 2019, 61 (05) : 1242 - 1257
  • [39] Spatial dynamic panel data models with correlated random effects
    Li, Liyao
    Yang, Zhenlin
    [J]. JOURNAL OF ECONOMETRICS, 2021, 221 (02) : 424 - 454
  • [40] PANEL DATA MODELS WITH SPATIALLY DEPENDENT NESTED RANDOM EFFECTS
    Fingleton, Bernard
    Le Gallo, Julie
    Pirotte, Alain
    [J]. JOURNAL OF REGIONAL SCIENCE, 2018, 58 (01) : 63 - 80