Generalized prediction intervals for treatment effects in random-effects models

被引:3
|
作者
Al-Sarraj, Razaw [1 ]
von Bromssen, Claudia [1 ]
Forkman, Johannes [1 ,2 ]
机构
[1] Swedish Univ Agr Sci, Dept Energy & Technol, Box 7032, S-75007 Uppsala, Sweden
[2] Swedish Univ Agr Sci, Dept Crop Prod Ecol, Uppsala, Sweden
关键词
generalized prediction intervals; random effects; random models; REML; TESTING VARIANCE-COMPONENTS; MIXED MODELS; HYPOTHESES; BLUP;
D O I
10.1002/bimj.201700255
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article derives generalized prediction intervals for random effects in linear random-effects models. For balanced and unbalanced data in two-way layouts, models are considered with and without interaction. Coverage of the proposed generalized prediction intervals was estimated in a simulation study based on an agricultural field experiment. Generalized prediction intervals were compared with prediction intervals based on the restricted maximum likelihood (REML) procedure and the approximate methods of Satterthwaite and Kenward and Roger. The simulation study showed that coverage of generalized prediction intervals was closer to the nominal level 0.95 than coverage of prediction intervals based on the REML procedure.
引用
收藏
页码:1242 / 1257
页数:16
相关论文
共 50 条
  • [1] Confidence intervals for the variance component of random-effects linear models
    Bottai, Matteo
    Orsini, Nicola
    [J]. STATA JOURNAL, 2004, 4 (04): : 429 - 435
  • [2] PREDICTION INTERVALS FOR A BALANCED ONE-WAY RANDOM-EFFECTS MODEL
    WANG, CM
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1992, 21 (03) : 671 - 687
  • [3] Frequentist performances of Bayesian prediction intervals for random-effects meta-analysis
    Hamaguchi, Yuta
    Noma, Hisashi
    Nagashima, Kengo
    Yamada, Tomohide
    Furukawa, Toshi A.
    [J]. BIOMETRICAL JOURNAL, 2021, 63 (02) : 394 - 405
  • [4] A note on the graphical presentation of prediction intervals in random-effects meta-analyses
    Guddat C.
    Grouven U.
    Bender R.
    Skipka G.
    [J]. Systematic Reviews, 1 (1)
  • [5] Prediction intervals for random-effects meta-analysis: A confidence distribution approach
    Nagashima, Kengo
    Noma, Hisashi
    Furukawa, Toshi A.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (06) : 1689 - 1702
  • [6] Best Prediction of the Additive Genomic Variance in Random-Effects Models
    Schreck, Nicholas
    Piepho, Hans-Peter
    Schlather, Martin
    [J]. GENETICS, 2019, 213 (02) : 379 - 394
  • [7] Fixed-effect Versus Random-effects Models for Meta-analyses: Random-effects Models
    Halme, Alex L. E.
    McAlpine, Kristen
    Martini, Alberto
    [J]. EUROPEAN UROLOGY FOCUS, 2023, 9 (05): : 693 - 694
  • [8] RANDOM-EFFECTS MODELS FOR LONGITUDINAL DATA
    LAIRD, NM
    WARE, JH
    [J]. BIOMETRICS, 1982, 38 (04) : 963 - 974
  • [9] Study specific prediction intervals for random-effects meta-analysis: A tutorial Prediction intervals in meta-analysis
    van Aert, Robbie C. M.
    Schmid, Christopher H.
    Svensson, David
    Jackson, Dan
    [J]. RESEARCH SYNTHESIS METHODS, 2021, 12 (04) : 429 - 447
  • [10] RANDOM-EFFECTS MODELS FOR BINARY RESPONSES
    GIANOLA, D
    FERNANDO, RL
    [J]. BIOMETRICS, 1986, 42 (01) : 217 - 218