Study specific prediction intervals for random-effects meta-analysis: A tutorial Prediction intervals in meta-analysis

被引:9
|
作者
van Aert, Robbie C. M. [1 ]
Schmid, Christopher H. [2 ]
Svensson, David [3 ]
Jackson, Dan [3 ]
机构
[1] Tilburg Univ, Methodol & Stat, Tilburg, Netherlands
[2] Brown Univ, Dept Biostat, Providence, RI USA
[3] Stat Innovat, Cambridge, England
基金
欧洲研究理事会;
关键词
best linear unbiased prediction; empirical Bayes estimate; forest plot; prediction interval; shrinkage; BETWEEN-STUDY VARIANCE; RANDOM-EFFECTS MODELS; CONFIDENCE-INTERVAL; CLINICAL-TRIALS; HETEROGENEITY; REEVALUATION; ESTIMATORS; INFERENCE;
D O I
10.1002/jrsm.1490
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The pooled estimate of the average effect is of primary interest when fitting the random-effects model for meta-analysis. However estimates of study specific effects, for example those displayed on forest plots, are also often of interest. In this tutorial, we present the case, with the accompanying statistical theory, for estimating the study specific true effects using so called 'empirical Bayes estimates' or 'Best Unbiased Linear Predictions' under the random-effects model. These estimates can be accompanied by prediction intervals that indicate a plausible range of study specific true effects. We coalesce and elucidate the available literature and illustrate the methodology using two published meta-analyses as examples. We also perform a simulation study that reveals that coverage probability of study specific prediction intervals are substantially too low if the between-study variance is small but not negligible. Researchers need to be aware of this defect when interpreting prediction intervals. We also show how empirical Bayes estimates, accompanied with study specific prediction intervals, can embellish forest plots. We hope that this tutorial will serve to provide a clear theoretical underpinning for this methodology and encourage its widespread adoption.
引用
收藏
页码:429 / 447
页数:19
相关论文
共 50 条
  • [1] Prediction intervals for random-effects meta-analysis: A confidence distribution approach
    Nagashima, Kengo
    Noma, Hisashi
    Furukawa, Toshi A.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (06) : 1689 - 1702
  • [2] Frequentist performances of Bayesian prediction intervals for random-effects meta-analysis
    Hamaguchi, Yuta
    Noma, Hisashi
    Nagashima, Kengo
    Yamada, Tomohide
    Furukawa, Toshi A.
    [J]. BIOMETRICAL JOURNAL, 2021, 63 (02) : 394 - 405
  • [3] Meta-analysis: Confidence intervals and Prediction intervals
    Botella, Juan
    Sanchez-Meca, Julio
    [J]. ANALES DE PSICOLOGIA, 2024, 40 (02): : 344 - 354
  • [4] Prediction interval in random-effects meta-analysis
    Spineli, Loukia M.
    Pandis, Nikolaos
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2020, 157 (04) : 586 - 588
  • [5] Confidence intervals for the overall effect size in random-effects meta-analysis
    Sanchez-Meca, Julio
    Marin-Martinez, Fulgencio
    [J]. PSYCHOLOGICAL METHODS, 2008, 13 (01) : 31 - 48
  • [6] Use of Prediction Intervals in Network Meta-analysis
    Lin, Lifeng
    [J]. JAMA NETWORK OPEN, 2019, 2 (08)
  • [7] Plea for routinely presenting prediction intervals in meta-analysis
    IntHout, Joanna
    Ioannidis, John P. A.
    Rovers, Maroeska M.
    Goeman, Jelle J.
    [J]. BMJ OPEN, 2016, 6 (07):
  • [8] Meta-analysis of randomized trials, heterogeneity and prediction intervals
    Catala-Lopez, Ferran
    Tobias, Aurelio
    [J]. MEDICINA CLINICA, 2014, 142 (06): : 270 - 274
  • [9] On random-effects meta-analysis
    Zeng, D.
    Lin, D. Y.
    [J]. BIOMETRIKA, 2015, 102 (02) : 281 - 294