Asymptotics and bootstrap for random-effects panel data transformation models

被引:1
|
作者
Su, Liangjun [1 ]
Yang, Zhenlin [1 ]
机构
[1] Singapore Management Univ, Sch Econ, 90 Stamford Rd, Singapore 178903, Singapore
关键词
Asymptotics; error components bootstrap; quasi-MLE; Transformed panels; random-effects; robust VC matrix estimation; POWER-TRANSFORMATIONS; RANK ESTIMATION; UNIFORM LAW; FAMILY;
D O I
10.1080/07474938.2015.1122235
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article investigates the asymptotic properties of quasi-maximum likelihood (QML) estimators for random-effects panel data transformation models where both the response and (some of) the covariates are subject to transformations for inducing normality, flexible functional form, homoskedasticity, and simple model structure. We develop a QML-type procedure for model estimation and inference. We prove the consistency and asymptotic normality of the QML estimators, and propose a simple bootstrap procedure that leads to a robust estimate of the variance-covariance (VC) matrix. Monte Carlo results reveal that the QML estimators perform well in finite samples, and that the gains by using the robust VC matrix estimate for inference can be enormous.
引用
收藏
页码:602 / 625
页数:24
相关论文
共 50 条
  • [41] Conditional mix-GEE models for longitudinal data with unspecified random-effects distributions
    Xing, Yanchun
    Xu, Lili
    Ma, Wenqing
    Zhu, Zhichuan
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (04) : 862 - 876
  • [42] APPLICATION OF RANDOM-EFFECTS PROBIT REGRESSION-MODELS
    GIBBONS, RD
    HEDEKER, D
    [J]. JOURNAL OF CONSULTING AND CLINICAL PSYCHOLOGY, 1994, 62 (02) : 285 - 296
  • [43] Marginalized random-effects models for clustered binomial data through innovative link functions
    Kazemi, Iraj
    Hassanzadeh, Fatemeh
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2021, 105 (02) : 197 - 228
  • [44] Spatial dynamic panel data models with correlated random effects
    Li, Liyao
    Yang, Zhenlin
    [J]. JOURNAL OF ECONOMETRICS, 2021, 221 (02) : 424 - 454
  • [45] PANEL DATA MODELS WITH SPATIALLY DEPENDENT NESTED RANDOM EFFECTS
    Fingleton, Bernard
    Le Gallo, Julie
    Pirotte, Alain
    [J]. JOURNAL OF REGIONAL SCIENCE, 2018, 58 (01) : 63 - 80
  • [46] Nonlinear Random-Effects Mixture Models for Repeated Measures
    Casey L. Codd
    Robert Cudeck
    [J]. Psychometrika, 2014, 79 : 60 - 83
  • [47] Two competing linear random-effects models and their connections
    Changli Lu
    Yuqin Sun
    Yongge Tian
    [J]. Statistical Papers, 2018, 59 : 1101 - 1115
  • [48] RANDOM-EFFECTS MODELS FOR SERIAL OBSERVATIONS WITH BINARY RESPONSE
    STIRATELLI, R
    LAIRD, N
    WARE, JH
    [J]. BIOMETRICS, 1984, 40 (04) : 961 - 971
  • [49] Marginalized random-effects models for clustered binomial data through innovative link functions
    Iraj Kazemi
    Fatemeh Hassanzadeh
    [J]. AStA Advances in Statistical Analysis, 2021, 105 : 197 - 228
  • [50] Estimation of and testing for random effects in dynamic panel data models
    Wu, Jianhong
    Zhu, Lixing
    [J]. TEST, 2012, 21 (03) : 477 - 497