共 50 条
PANEL DATA MODELS WITH SPATIALLY DEPENDENT NESTED RANDOM EFFECTS
被引:7
|作者:
Fingleton, Bernard
[1
]
Le Gallo, Julie
[2
]
Pirotte, Alain
[3
]
机构:
[1] Univ Cambridge, Dept Land Econ, 19 Silver St, Cambridge CB3 9EP, England
[2] Univ Bourgogne Franche Comte, AgroSup Dijon, CESAER, INRA, 26 Blvd Petitjean, F-21000 Dijon, France
[3] Univ Paris II Pantheon Assas, CRED, 12 Pl Pantheon, F-75231 Paris 05, France
关键词:
ESTIMATORS;
D O I:
10.1111/jors.12327
中图分类号:
F [经济];
学科分类号:
02 ;
摘要:
This paper focuses on panel data models combining spatial dependence with a nested (hierarchical) structure. We use a generalized moments estimator to estimate the spatial autoregressive parameter and the variance components of the disturbance process. A spatial counterpart of the Cochrane-Orcutt transformation leads to a feasible generalized least squares procedure to estimate the regression parameters. Monte Carlo simulations show that our estimators perform well in terms of root mean square error compared to the maximum likelihood estimator. The approach is applied to English house price data for districts nested within counties.
引用
下载
收藏
页码:63 / 80
页数:18
相关论文