Absence of Lavrentiev gap for non-autonomous functionals with (p, q)-growth

被引:26
|
作者
Esposito, Antonio [1 ]
Leonetti, Francesco [1 ]
Petricca, Pier Vincenzo [1 ]
机构
[1] Univ Aquila, DIS, Via Vetoio Snc, I-67100 Laquila, Italy
关键词
Variational integrals; non-standard growth; regularity; Lavrentiev gap; MINIMIZERS; REGULARITY; INTEGRALS;
D O I
10.1515/anona-2016-0198
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider non-autonomous functionals of the form F(u, Omega) =integral(Omega) f(x, Du(x))dx, where u : Omega -> R-N, Omega subset of R-n. We assume that f(x, z) grows at least as vertical bar z vertical bar(p) and at most as vertical bar z vertical bar(q). Moreover, f(x, z) is Holder continuous with respect to x and convex with respect to z. In this setting, we give a sufficient condition on the density f(x, z) that ensures the absence of a Lavrentiev gap.
引用
收藏
页码:73 / 78
页数:6
相关论文
共 50 条
  • [41] Non-autonomous chemostat models with non-monotonic growth
    Caraballo, Tomas
    Lopez-de-la-Cruz, Javier
    Caraballo-Romero, Veronica
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (12) : 1398 - 1415
  • [42] Pullback Attractor of a Non-autonomous Model for Epitaxial Growth
    DUAN NING
    ZHAO XIAO-PENG
    Gao Wen-jie
    Communications in Mathematical Research, 2018, 34 (04) : 289 - 295
  • [43] A Survey on the Non Occurence of the Lavrentiev Gap for Convex, Autonomous Multiple Integral Scalar Variational Problems
    Bousquet, Pierre
    Mariconda, Carlo
    Treu, Giulia
    SET-VALUED AND VARIATIONAL ANALYSIS, 2015, 23 (01) : 55 - 68
  • [44] A Survey on the Non Occurence of the Lavrentiev Gap for Convex, Autonomous Multiple Integral Scalar Variational Problems
    Pierre Bousquet
    Carlo Mariconda
    Giulia Treu
    Set-Valued and Variational Analysis, 2015, 23 : 55 - 68
  • [45] Regularity for minimizers of functionals with p-q growth
    Esposito, Luca
    Leonetti, Francesco
    Mingione, Giuseppe
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (02): : 133 - 148
  • [46] Partial regularity for non autonomous functionals with non standard growth conditions
    De Maria, Bruno
    di Napoli, Antonia Passarelli
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 38 (3-4) : 417 - 439
  • [47] Partial regularity for non autonomous functionals with non standard growth conditions
    Bruno De Maria
    Antonia Passarelli di Napoli
    Calculus of Variations and Partial Differential Equations, 2010, 38 : 417 - 439
  • [48] Non-autonomous weighted elliptic equations with double exponential growth
    Baraket, Sami
    Jaidane, Rached
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2021, 29 (03): : 33 - 66
  • [49] Uniform attractors for non-autonomous p-Laplacian equations
    Chen, Guang-xia
    Zhong, Cheng-Kui
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (11) : 3349 - 3363
  • [50] Non-autonomous regulation of cell growth in Drosophila follicular epithelium
    Row, S.
    Deng, W.
    MOLECULAR BIOLOGY OF THE CELL, 2018, 29 (26)