Partial regularity for non autonomous functionals with non standard growth conditions

被引:0
|
作者
Bruno De Maria
Antonia Passarelli di Napoli
机构
[1] Università di Napoli “Federico,Dipartimento di Matematica e Applicazioni “R. Caccioppoli”
[2] II”,undefined
关键词
35B65; 35J50; 49J25;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a C1,μ partial regularity result for minimizers of a non autonomous integral funcitional of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{F}(u; \Omega):=\int_{\Omega}f(x, Du)\ dx$$\end{document}under the so-called non standard growth conditions. More precisely we assume that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c |z|^{p}\leq f(x ,z) \leq L (1+|z|^{q}),$$\end{document}for 2 ≤ p < q and that Dzf(x, z) is α-Hölder continuous with respect to the x-variable. The regularity is obtained imposing that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{p}{q} < \frac{n+\alpha}{n}}$$\end{document} but without any assumption on the growth of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D^{2}_{z}f}$$\end{document}.
引用
收藏
页码:417 / 439
页数:22
相关论文
共 50 条
  • [1] Partial regularity for non autonomous functionals with non standard growth conditions
    De Maria, Bruno
    di Napoli, Antonia Passarelli
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 38 (3-4) : 417 - 439
  • [2] Partial regularity results for non-autonomous functionals with Φ-growth conditions
    Giannetti, Flavia
    di Napoli, Antonia Passarelli
    Tachikawa, Atsushi
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (06) : 2147 - 2165
  • [3] Partial and full boundary regularity for non-autonomous functionals with Φ-growth conditions
    Giannetti, Flavia
    di Napoli, Antonia Passarelli
    Tachikawa, Atsushi
    FORUM MATHEMATICUM, 2019, 31 (04) : 1027 - 1050
  • [4] Partial regularity for minimizers of a class of non autonomous functionals with nonstandard growth
    Giannetti, Flavia
    di Napoli, Antonia Passarelli
    Ragusa, Maria Alessandra
    Tachikawa, Atsushi
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (06)
  • [5] Partial regularity for minimizers of a class of non autonomous functionals with nonstandard growth
    Flavia Giannetti
    Antonia Passarelli di Napoli
    Maria Alessandra Ragusa
    Atsushi Tachikawa
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [6] A new partial regularity result for non-autonomous convex integrals with non-standard growth conditions
    De Maria, Bruno
    di Napoli, Antonia Passarelli
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (03) : 1363 - 1385
  • [7] Regularity results for a new class of functionals with non-standard growth conditions
    Giannetti, Flavia
    di Napoli, Antonia Passarelli
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (03) : 1280 - 1305
  • [8] Regularity for non-autonomous functionals with almost linear growth
    Breit, Dominic
    De Maria, Bruno
    di Napoli, Antonia Passarelli
    MANUSCRIPTA MATHEMATICA, 2011, 136 (1-2) : 83 - 114
  • [9] Regularity for non-autonomous functionals with almost linear growth
    Dominic Breit
    Bruno De Maria
    Antonia Passarelli di Napoli
    Manuscripta Mathematica, 2011, 136 : 83 - 114
  • [10] Partial regularity for non-autonomous degenerate quasi-convex functionals with general growth
    Celada, Pietro
    Ok, Jihoon
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194