Absence of Lavrentiev gap for non-autonomous functionals with (p, q)-growth

被引:26
|
作者
Esposito, Antonio [1 ]
Leonetti, Francesco [1 ]
Petricca, Pier Vincenzo [1 ]
机构
[1] Univ Aquila, DIS, Via Vetoio Snc, I-67100 Laquila, Italy
关键词
Variational integrals; non-standard growth; regularity; Lavrentiev gap; MINIMIZERS; REGULARITY; INTEGRALS;
D O I
10.1515/anona-2016-0198
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider non-autonomous functionals of the form F(u, Omega) =integral(Omega) f(x, Du(x))dx, where u : Omega -> R-N, Omega subset of R-n. We assume that f(x, z) grows at least as vertical bar z vertical bar(p) and at most as vertical bar z vertical bar(q). Moreover, f(x, z) is Holder continuous with respect to x and convex with respect to z. In this setting, we give a sufficient condition on the density f(x, z) that ensures the absence of a Lavrentiev gap.
引用
收藏
页码:73 / 78
页数:6
相关论文
共 50 条
  • [21] Regularity for minimizers of a class of non-autonomous functionals with sub-quadratic growth
    Gentile, Andrea
    ADVANCES IN CALCULUS OF VARIATIONS, 2022, 15 (03) : 385 - 399
  • [22] Maximal regularity for local minimizers of non-autonomous functionals
    Hasto, Peter
    Ok, Jihoon
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (04) : 1285 - 1334
  • [23] Partial regularity for non-autonomous degenerate quasi-convex functionals with general growth
    Celada, Pietro
    Ok, Jihoon
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194
  • [24] POSITIVE SOLUTIONS FOR RESONANT SINGULAR NON-AUTONOMOUS (p, q)-EQUATIONS
    Papageorgiou, Nikolaos s.
    Qin, Dongdong
    Radulescu, Vicentiu d.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024,
  • [25] NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES
    Baroni, P.
    Colombo, M.
    Mingione, G.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) : 347 - 379
  • [26] Existence of normalized solutions to a class of non-autonomous (p, q)-Laplacian equations
    Cui, Xiaoxiao
    Li, Anran
    Wei, Chongqing
    ANALYSIS AND MATHEMATICAL PHYSICS, 2025, 15 (02)
  • [27] Regularity results for non-autonomous functionals with L log L-growth and Orlicz Sobolev coefficients
    Giova, Raffaella
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (06):
  • [29] Multiplicity and concentration properties for (p, q)-Kirchhoff non-autonomous problems with Choquard nonlinearity
    Zuo, Jiabin
    Zhang, Weiqiang
    Radulescu, Vicentiu D.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 191
  • [30] Stability of q-fractional non-autonomous systems
    Jarad, Fahd
    Abdeljawad, Thabet
    Baleanu, Dumitru
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) : 780 - 784