POSITIVE SOLUTIONS FOR RESONANT SINGULAR NON-AUTONOMOUS (p, q)-EQUATIONS

被引:0
|
作者
Papageorgiou, Nikolaos s. [1 ]
Qin, Dongdong [2 ]
Radulescu, Vicentiu d. [3 ,4 ,5 ,6 ,7 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Cent South Univ, Sch Math & Stat, HNP, LAMA, Changsha 410083, Hunan, Peoples R China
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
[4] AGH Univ Krakow, Fac Appl Math, al Mickiewicza 30, PL-30059 Krakow, Poland
[5] Romanian Acad, Simion Stoilow Inst Math, Bucharest 010702, Romania
[6] Brno Univ Technol, Fac Elect Engn & Commun, Tech 3058-10, Brno 61600, Czech Republic
[7] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-autonomous {p.q )-operator; principle eigenvalue; resonance; Hardy's inequality; smooth positive solution; MINIMIZERS; EQUATIONS;
D O I
10.3934/dcdsb.2024165
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a singular elliptic equation, driven by the non-autonomous ( p, q )-operator and with a resonant perturbation. Using variational tools together with truncation and comparison techniques, we show that if the L (infinity)- norm of the coefficient of the singular term is small enough, then the problem has at least two positive smooth solutions.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Singular non-autonomous (p, q)-equations with competing nonlinearities
    Papageorgiou, Nikolaos S.
    Qin, Dongdong
    Radulescu, Vicentiu D.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 81
  • [2] TWIN POSITIVE SOLUTIONS FOR RESONANT SINGULAR (p, q)-EQUATIONS
    Onete, Florin-Iulian
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, : 169 - 182
  • [3] Existence of normalized solutions to a class of non-autonomous (p, q)-Laplacian equations
    Cui, Xiaoxiao
    Li, Anran
    Wei, Chongqing
    ANALYSIS AND MATHEMATICAL PHYSICS, 2025, 15 (02)
  • [4] Non-autonomous (p, q)-equations with unbalanced growth
    Papageorgiou, Nikolaos S.
    Pudelko, Anna
    Radulescu, Vicentiu D.
    MATHEMATISCHE ANNALEN, 2023, 385 (3-4) : 1707 - 1745
  • [5] Non-autonomous (p, q)-equations with unbalanced growth
    Nikolaos S. Papageorgiou
    Anna Pudełko
    Vicenţiu D. Rădulescu
    Mathematische Annalen, 2023, 385 : 1707 - 1745
  • [6] Positive solutions of a system of non-autonomous fractional differential equations
    Daftardar-Gejji, V
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 302 (01) : 56 - 64
  • [7] Positive periodic solutions to the forced non-autonomous Duffing equations
    Sremr, Jiri
    GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (02) : 295 - 307
  • [8] Positive solutions for anisotropic singular (p,q)-equations
    Papageorgiou, Nikolaos S.
    Scapellato, Andrea
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):
  • [9] Positive Solutions for Singular Anisotropic (p, q)-Equations
    Nikolaos S. Papageorgiou
    Patrick Winkert
    The Journal of Geometric Analysis, 2021, 31 : 11849 - 11877
  • [10] Positive Solutions for Singular Anisotropic (p, q)-Equations
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) : 11849 - 11877