POSITIVE SOLUTIONS FOR RESONANT SINGULAR NON-AUTONOMOUS (p, q)-EQUATIONS

被引:0
|
作者
Papageorgiou, Nikolaos s. [1 ]
Qin, Dongdong [2 ]
Radulescu, Vicentiu d. [3 ,4 ,5 ,6 ,7 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Cent South Univ, Sch Math & Stat, HNP, LAMA, Changsha 410083, Hunan, Peoples R China
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
[4] AGH Univ Krakow, Fac Appl Math, al Mickiewicza 30, PL-30059 Krakow, Poland
[5] Romanian Acad, Simion Stoilow Inst Math, Bucharest 010702, Romania
[6] Brno Univ Technol, Fac Elect Engn & Commun, Tech 3058-10, Brno 61600, Czech Republic
[7] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-autonomous {p.q )-operator; principle eigenvalue; resonance; Hardy's inequality; smooth positive solution; MINIMIZERS; EQUATIONS;
D O I
10.3934/dcdsb.2024165
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a singular elliptic equation, driven by the non-autonomous ( p, q )-operator and with a resonant perturbation. Using variational tools together with truncation and comparison techniques, we show that if the L (infinity)- norm of the coefficient of the singular term is small enough, then the problem has at least two positive smooth solutions.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Almost Automorphic Solutions of Non-autonomous Differential Equations
    Zhu, Hailong
    Liao, Fang-Fang
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01): : 205 - 223
  • [32] Existence and Nonexistence of Positive Solutions for Singular (p, q)-Equations with Superdiffusive Perturbation
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    RESULTS IN MATHEMATICS, 2021, 76 (04)
  • [33] Existence and Nonexistence of Positive Solutions for Singular (p, q)-Equations with Superdiffusive Perturbation
    Nikolaos S. Papageorgiou
    Patrick Winkert
    Results in Mathematics, 2021, 76
  • [34] Positive solutions for singular (p,2)-equations
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (03):
  • [35] Positive solutions for singular (p, 2)-equations
    Nikolaos S. Papageorgiou
    Calogero Vetro
    Francesca Vetro
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [36] CONDITIONALLY PERIODIC-SOLUTIONS OF THE CANONICAL SYSTEMS OF DIFFERENTIAL-EQUATIONS IN NON-AUTONOMOUS RESONANT CASE
    ZHURAVLEV, SG
    CELESTIAL MECHANICS, 1979, 19 (01): : 77 - 93
  • [37] Periodic solutions of second order non-autonomous singular dynamical systems
    Chu, Jifeng
    Torres, Pedro J.
    Zhang, Meirong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 239 (01) : 196 - 212
  • [38] Homoclinic solutions of non-autonomous difference equations arising in hydrodynamics
    Rachunek, Lukas
    Rachunkova, Irena
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (01) : 14 - 23
  • [39] On oscillating radial solutions for non-autonomous semilinear elliptic equations
    Al Jebawy, H.
    Ibrahim, H.
    Salloum, Z.
    AIMS MATHEMATICS, 2024, 9 (06): : 15190 - 15201
  • [40] Periodic Solutions for a Class of Non-autonomous Newton Differential Equations
    Jaume Llibre
    Amar Makhlouf
    Differential Equations and Dynamical Systems, 2020, 28 : 373 - 379