POSITIVE SOLUTIONS FOR RESONANT SINGULAR NON-AUTONOMOUS (p, q)-EQUATIONS

被引:0
|
作者
Papageorgiou, Nikolaos s. [1 ]
Qin, Dongdong [2 ]
Radulescu, Vicentiu d. [3 ,4 ,5 ,6 ,7 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Cent South Univ, Sch Math & Stat, HNP, LAMA, Changsha 410083, Hunan, Peoples R China
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
[4] AGH Univ Krakow, Fac Appl Math, al Mickiewicza 30, PL-30059 Krakow, Poland
[5] Romanian Acad, Simion Stoilow Inst Math, Bucharest 010702, Romania
[6] Brno Univ Technol, Fac Elect Engn & Commun, Tech 3058-10, Brno 61600, Czech Republic
[7] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2024年
基金
中国国家自然科学基金;
关键词
Non-autonomous {p.q )-operator; principle eigenvalue; resonance; Hardy's inequality; smooth positive solution; MINIMIZERS; EQUATIONS;
D O I
10.3934/dcdsb.2024165
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a singular elliptic equation, driven by the non-autonomous ( p, q )-operator and with a resonant perturbation. Using variational tools together with truncation and comparison techniques, we show that if the L (infinity)- norm of the coefficient of the singular term is small enough, then the problem has at least two positive smooth solutions.
引用
收藏
页数:16
相关论文
共 50 条