Periodic Solutions for a Class of Non-autonomous Newton Differential Equations

被引:1
|
作者
Llibre, Jaume [1 ]
Makhlouf, Amar [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, Spain
[2] Univ Annaba, Dept Math, Elhadjar 23, Annaba, Algeria
关键词
Periodic solution; Newton differential equation; Averaging theory;
D O I
10.1007/s12591-016-0333-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide sufficient conditions for the existence of periodic solutions of the second-order non-autonomous differential equation x(sic) = -del V-x(t,x), in R-n, where V(t, x) = parallel to x parallel to(2)/2 + epsilon W + (t, x) with W(t, x) a 2 pi-periodic function in the variable t, epsilon is a small parameter, x is an element of R-n and del V-x((t, x)) = (partial derivative V/partial derivative(x1),...,partial derivative V/partial derivative x(n)). Note that this is a particular class of non-autonomous Newton differential equations. Moreover we provide some applications.
引用
收藏
页码:373 / 379
页数:7
相关论文
共 50 条
  • [1] Periodic Solutions for a Class of Non-autonomous Newton Differential Equations
    Jaume Llibre
    Amar Makhlouf
    [J]. Differential Equations and Dynamical Systems, 2020, 28 : 373 - 379
  • [2] Periodic solutions for a class of non-autonomous differential delay equations
    Rong Cheng
    Junxiang Xu
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2009, 16
  • [3] Periodic solutions for a class of non-autonomous differential delay equations
    Cheng, Rong
    Xu, Junxiang
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2009, 16 (06): : 793 - 809
  • [4] ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS DIFFERENTIAL DELAY EQUATIONS
    Cheng, Rong
    Xu, Junxiang
    Zhang, Dongfeng
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2010, 35 (01) : 139 - 154
  • [5] PERIODIC SOLUTIONS OF POLYNOMIAL NON-AUTONOMOUS DIFFERENTIAL EQUATIONS
    Alwash, Mohamad A. M.
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2005,
  • [6] Periodic Solutions of a Class of Non-autonomous Discontinuous Second-Order Differential Equations
    Clayton E. L. da Silva
    Alain Jacquemard
    Marco A. Teixeira
    [J]. Journal of Dynamical and Control Systems, 2020, 26 : 17 - 44
  • [7] Periodic Solutions of a Class of Non-autonomous Discontinuous Second-Order Differential Equations
    da Silva, Clayton E. L.
    Jacquemard, Alain
    Teixeira, Marco A.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2020, 26 (01) : 17 - 44
  • [8] Existence of positive periodic solutions for non-autonomous functional differential equations
    Cheng, Sui Sun
    Zhang, Guang
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2001,
  • [9] Topological degree for periodic solutions of non-autonomous differential delay equations
    Cheng, Rong
    Hu, Jianhua
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2011, 54 (01): : 55 - 63
  • [10] (ω, c)-Periodic Mild Solutions to Non-Autonomous Abstract Differential Equations
    Abadias, Luciano
    Alvarez, Edgardo
    Grau, Rogelio
    [J]. MATHEMATICS, 2021, 9 (05) : 1 - 15