PERIODIC SOLUTIONS OF POLYNOMIAL NON-AUTONOMOUS DIFFERENTIAL EQUATIONS

被引:0
|
作者
Alwash, Mohamad A. M. [1 ]
机构
[1] West Los Angeles Coll, Dept Math, Los Angeles, CA 90230 USA
关键词
Periodic solutions; polynomial non-autonomous equations; Abel differential equations; limit cycles; uniformly isochronous centers; Hilbert's sixteenth problem;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some results on the number of periodic solutions for scalar non-autonomous polynomial equations of degree five. We also consider a class of polynomial equations of any degree. Our results give upper bounds for the number of limit cycles of two-dimensional systems.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Periodic Solutions for a Class of Non-autonomous Newton Differential Equations
    Jaume Llibre
    Amar Makhlouf
    [J]. Differential Equations and Dynamical Systems, 2020, 28 : 373 - 379
  • [2] Periodic solutions for a class of non-autonomous differential delay equations
    Rong Cheng
    Junxiang Xu
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2009, 16
  • [3] Periodic solutions for a class of non-autonomous differential delay equations
    Cheng, Rong
    Xu, Junxiang
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2009, 16 (06): : 793 - 809
  • [4] Periodic Solutions for a Class of Non-autonomous Newton Differential Equations
    Llibre, Jaume
    Makhlouf, Amar
    [J]. DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2020, 28 (02) : 373 - 379
  • [5] Existence of positive periodic solutions for non-autonomous functional differential equations
    Cheng, Sui Sun
    Zhang, Guang
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2001,
  • [6] Topological degree for periodic solutions of non-autonomous differential delay equations
    Cheng, Rong
    Hu, Jianhua
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2011, 54 (01): : 55 - 63
  • [7] (ω, c)-Periodic Mild Solutions to Non-Autonomous Abstract Differential Equations
    Abadias, Luciano
    Alvarez, Edgardo
    Grau, Rogelio
    [J]. MATHEMATICS, 2021, 9 (05) : 1 - 15
  • [8] ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS DIFFERENTIAL DELAY EQUATIONS
    Cheng, Rong
    Xu, Junxiang
    Zhang, Dongfeng
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2010, 35 (01) : 139 - 154
  • [9] Periodic Solutions for Non-Autonomous Neutral Functional Differential Equations with Finite Delay
    Zitane M.
    [J]. Acta Mathematica Vietnamica, 2017, 42 (3) : 533 - 550
  • [10] Periodic orbits for perturbed non-autonomous differential equations
    Coll, B.
    Gasull, A.
    Prohens, R.
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (07): : 803 - 819