Absence of Lavrentiev gap for non-autonomous functionals with (p, q)-growth

被引:26
|
作者
Esposito, Antonio [1 ]
Leonetti, Francesco [1 ]
Petricca, Pier Vincenzo [1 ]
机构
[1] Univ Aquila, DIS, Via Vetoio Snc, I-67100 Laquila, Italy
关键词
Variational integrals; non-standard growth; regularity; Lavrentiev gap; MINIMIZERS; REGULARITY; INTEGRALS;
D O I
10.1515/anona-2016-0198
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider non-autonomous functionals of the form F(u, Omega) =integral(Omega) f(x, Du(x))dx, where u : Omega -> R-N, Omega subset of R-n. We assume that f(x, z) grows at least as vertical bar z vertical bar(p) and at most as vertical bar z vertical bar(q). Moreover, f(x, z) is Holder continuous with respect to x and convex with respect to z. In this setting, we give a sufficient condition on the density f(x, z) that ensures the absence of a Lavrentiev gap.
引用
收藏
页码:73 / 78
页数:6
相关论文
共 50 条
  • [11] Partial regularity results for non-autonomous functionals with Φ-growth conditions
    Giannetti, Flavia
    di Napoli, Antonia Passarelli
    Tachikawa, Atsushi
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (06) : 2147 - 2165
  • [12] Crouzeix-Raviart finite element method for non-autonomous variational problems with Lavrentiev gap
    Anna Kh. Balci
    Christoph Ortner
    Johannes Storn
    Numerische Mathematik, 2022, 151 : 779 - 805
  • [13] Crouzeix-Raviart finite element method for non-autonomous variational problems with Lavrentiev gap
    Balci, Anna Kh
    Ortner, Christoph
    Storn, Johannes
    NUMERISCHE MATHEMATIK, 2022, 151 (04) : 779 - 805
  • [14] On the Regularity of Minima of Non-autonomous Functionals
    De Filippis, Cristiana
    Mingione, Giuseppe
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) : 1584 - 1626
  • [15] On the Regularity of Minima of Non-autonomous Functionals
    Cristiana De Filippis
    Giuseppe Mingione
    The Journal of Geometric Analysis, 2020, 30 : 1584 - 1626
  • [16] New regularity theorems for non-autonomous variational integrals with (p, q)-growth
    Dominic Breit
    Calculus of Variations and Partial Differential Equations, 2012, 44 : 101 - 129
  • [17] New regularity theorems for non-autonomous variational integrals with (p, q)-growth
    Breit, Dominic
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 44 (1-2) : 101 - 129
  • [18] Regularity results for a class of non-autonomous obstacle problems with (p, q)-growth
    De Filippis, Cristiana
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)
  • [19] Partial and full boundary regularity for non-autonomous functionals with Φ-growth conditions
    Giannetti, Flavia
    di Napoli, Antonia Passarelli
    Tachikawa, Atsushi
    FORUM MATHEMATICUM, 2019, 31 (04) : 1027 - 1050
  • [20] Singular non-autonomous (p, q)-equations with competing nonlinearities
    Papageorgiou, Nikolaos S.
    Qin, Dongdong
    Radulescu, Vicentiu D.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 81