Inertial Krasnosel'skii-Mann type hybrid algorithms for solving hierarchical fixed point problems

被引:24
|
作者
Dong, Qiao-Li [1 ]
Kazmi, K. R. [2 ,3 ]
Ali, Rehan [4 ]
Li, Xiao-Huan [1 ]
机构
[1] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
[2] King Abdulaziz Univ, Fac Sci & Arts Rabigh, Dept Math, Jeddah, Saudi Arabia
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[4] Jamia Millia Islamia, Dept Math, New Delhi 110025, India
关键词
Hierarchical fixed point problem; inertial Krasnosel'skii-Mann type hybrid algorithm; nonexpansive mapping; strong convergence; 47H10; 49J35; 90C47; FORWARD-BACKWARD ALGORITHM; STRONG-CONVERGENCE; NONEXPANSIVE-MAPPINGS; MONOTONE-OPERATORS; ITERATIVE METHOD; PROXIMAL METHOD; THEOREMS;
D O I
10.1007/s11784-019-0699-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we suggest two inertial Krasnosel'skii-Mann type hybrid algorithms to approximate a solution of a hierarchical fixed point problem for nonexpansive mappings in Hilbert space. We prove strong convergence theorems for these algorithms and the conditions of the convergence are very weak comparing other algorithms for the hierarchical fixed point problems. Further, we derive some consequences from the main results. Finally, we present two academic numerical examples for comparing these two algorithms with the algorithm in Dong et al. (J Fixed Point Theory A 19(4):3097-3118, 2017), which illustrate the advantage of the proposed algorithms. The methods and results presented in this paper generalize and unify previously known corresponding methods and results of this area.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Inertial Krasnosel’skiǐ–Mann type hybrid algorithms for solving hierarchical fixed point problems
    Qiao-Li Dong
    K. R. Kazmi
    Rehan Ali
    Xiao-Huan Li
    [J]. Journal of Fixed Point Theory and Applications, 2019, 21
  • [2] Modified Inertial Krasnosel'skii-Mann type Method for Solving Fixed Point Problems in Real Uniformly Convex Banach Spaces
    Akuchu, Besheng George
    Aphane, Maggie
    Ugwunnadi, Godwin Chidi
    Okereke, George Emeka
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 1602 - 1617
  • [3] New inertial factors of the Krasnosel'skii-Mann iteration
    Dong, Yunda
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2021, 29 (01) : 145 - 161
  • [4] Inertial reflected Krasnosel'skii-Mann iteration with applications to monotone inclusion problems
    Izuchukwu, Chinedu
    Shehu, Yekini
    [J]. OPTIMIZATION, 2023,
  • [5] STRONG CONVERGENCE OF INERTIAL MANN ALGORITHMS FOR SOLVING HIERARCHICAL FIXED POINT PROBLEMS
    Tan, Bing
    Li, Songxiao
    [J]. JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2020, 4 (03): : 337 - 355
  • [6] Multi-step inertial Krasnosel'skii-Mann iteration with new inertial parameters arrays
    Dong, Qiao-Li
    Li, Xiao-Huan
    Cho, Yeol Je
    Rassias, Themistocles M.
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2021, 23 (03)
  • [7] Double Inertial Krasnosel'skii-Mann-Type Method for Approximating Fixed Point of Nonexpansive Mappings
    Akuchu, Besheng George
    Ezeafulukwe, Uzoamaka Azuka
    Aphane, Maggie
    Ugwunnadi, Godwin Chidi
    Asanya, Chukwuebuka Malachi
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 2246 - 2263
  • [8] ON ACCELERATION OF THE KRASNOSEL'SKII-MANN FIXED POINT ALGORITHM BASED ON CONJUGATE GRADIENT METHOD FOR SMOOTH OPTIMIZATION
    Hishinuma, Kazuhiro
    Iiduka, Hideaki
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (11) : 2243 - 2254
  • [9] MiKM: multi-step inertial Krasnosel'skii-Mann algorithm and its applications
    Dong, Q. L.
    Huang, J. Z.
    Li, X. H.
    Cho, Y. J.
    Rassias, Th. M.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2019, 73 (04) : 801 - 824
  • [10] A Modified Krasnosel'skii-Mann Iterative Algorithm for Approximating Fixed Points of Enriched Nonexpansive Mappings
    Berinde, Vasile
    [J]. SYMMETRY-BASEL, 2022, 14 (01):