New inertial factors of the Krasnosel'skii-Mann iteration

被引:15
|
作者
Dong, Yunda [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
关键词
Non-expansive operator; Fixed point; Krasnosel'skii-Mann iteration; Inertial factor; The Douglas-Rachford splitting; RACHFORD SPLITTING METHOD; PROXIMAL POINT ALGORITHM; MONOTONE-OPERATORS; FIXED-POINTS; CONVERGENCE;
D O I
10.1007/s11228-020-00541-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider inertial iterative schemes for approximating a fixed point of any given non-expansive operator in real Hilbert spaces. We provide new conditions on the inertial factors that ensure weak convergence and depend only on the iteration coefficients. For the special case of the Douglas-Rachford splitting, the conditions boil down to a sufficiently small upper bound on the sequence of inertial factors. Rudimentary numerical results indicate practical usefulness of the proposal.
引用
收藏
页码:145 / 161
页数:17
相关论文
共 42 条
  • [1] New Acceleration Factors of the Krasnosel'skii-Mann Iteration
    Dong, Yunda
    Sun, Mengdi
    [J]. RESULTS IN MATHEMATICS, 2022, 77 (05)
  • [2] Multi-step inertial Krasnosel'skii-Mann iteration with new inertial parameters arrays
    Dong, Qiao-Li
    Li, Xiao-Huan
    Cho, Yeol Je
    Rassias, Themistocles M.
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2021, 23 (03)
  • [3] ON THE CONVERGENCE RATE OF THE KRASNOSEL'SKII-MANN ITERATION
    Matsushita, Shin-Ya
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (01) : 162 - 170
  • [4] Inertial reflected Krasnosel'skii-Mann iteration with applications to monotone inclusion problems
    Izuchukwu, Chinedu
    Shehu, Yekini
    [J]. OPTIMIZATION, 2023,
  • [5] Some results about Krasnosel' skii-Mann iteration process
    Afshari, Hojjat
    Aydi, Hassen
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 4852 - 4859
  • [6] Multi-step inertial Krasnosel'skii-Mann iteration with new inertial parameters arrays (vol 23, 44, 2021)
    Dong, Qiao-Li
    Li, Xiao-Huan
    Cho, Yeol Je
    Rassias, Themistocles M.
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2021, 23 (04)
  • [7] New inertial factors of the Krasnosel’skiı̆-Mann iteration
    Yunda Dong
    [J]. Set-Valued and Variational Analysis, 2021, 29 : 145 - 161
  • [8] On the Convergence of the Inexact Running Krasnosel'skii-Mann Method
    Dall'Anese, Emiliano
    Simonetto, Andrea
    Bernstein, Andrey
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 613 - 618
  • [9] MiKM: multi-step inertial Krasnosel'skii-Mann algorithm and its applications
    Dong, Q. L.
    Huang, J. Z.
    Li, X. H.
    Cho, Y. J.
    Rassias, Th. M.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2019, 73 (04) : 801 - 824
  • [10] Inertial Krasnosel'skii-Mann type hybrid algorithms for solving hierarchical fixed point problems
    Dong, Qiao-Li
    Kazmi, K. R.
    Ali, Rehan
    Li, Xiao-Huan
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (02)