MiKM: multi-step inertial Krasnosel'skii-Mann algorithm and its applications

被引:48
|
作者
Dong, Q. L. [1 ,2 ]
Huang, J. Z. [3 ,4 ]
Li, X. H. [1 ,2 ]
Cho, Y. J. [5 ,6 ,7 ]
Rassias, Th. M. [8 ]
机构
[1] Civil Aviat Univ China, Tianjin Key Lab Adv Signal Proc, Tianjin 300300, Peoples R China
[2] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[5] Gyeongsang Natl Univ, Dept Math Educ, Jinju 660701, South Korea
[6] Gyeongsang Natl Univ, RINS, Jinju 660701, South Korea
[7] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[8] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
基金
中国国家自然科学基金;
关键词
Nonexpansive operator; Multi-step inertial Krasnosel'skii-Mann algorithm; Monotone inclusion; Bounded perturbation resilience; Douglas-Rachford splitting method; Forward-backward splitting method; Backward-forward splitting method; Davis-Yin splitting method; GRADIENT METHODS; SUPERIORIZATION;
D O I
10.1007/s10898-018-0727-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we first introduce a multi-step inertial Krasnosel'skii-Mann algorithm (MiKM) for nonexpansive operators in real Hilbert spaces. We give the convergence of the MiKM by investigating the convergence of the Krasnosel'skii-Mann algorithm with perturbations. We also establish global pointwise and ergodic iteration complexity bounds of the Krasnosel'skii-Mann algorithm with perturbations. Based on the MiKM, we construct some multi-step inertial splitting methods, including the multi-step inertial Douglas-Rachford splitting method (MiDRS), the multi-step inertial forward-backward splitting method, multi-step inertial backward-forward splitting method and and the multi-step inertial Davis-Yin splitting method. Numerical experiments are provided to illustrate the advantage of the MiDRS over the one-step inertial DRS and the original DRS.
引用
收藏
页码:801 / 824
页数:24
相关论文
共 50 条
  • [1] MiKM: multi-step inertial Krasnosel’skiǐ–Mann algorithm and its applications
    Q. L. Dong
    J. Z. Huang
    X. H. Li
    Y. J. Cho
    Th. M. Rassias
    [J]. Journal of Global Optimization, 2019, 73 : 801 - 824
  • [2] Multi-step inertial Krasnosel'skii-Mann iteration with new inertial parameters arrays
    Dong, Qiao-Li
    Li, Xiao-Huan
    Cho, Yeol Je
    Rassias, Themistocles M.
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2021, 23 (03)
  • [3] Multi-step inertial Krasnosel'skii-Mann iteration with new inertial parameters arrays (vol 23, 44, 2021)
    Dong, Qiao-Li
    Li, Xiao-Huan
    Cho, Yeol Je
    Rassias, Themistocles M.
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2021, 23 (04)
  • [4] New inertial factors of the Krasnosel'skii-Mann iteration
    Dong, Yunda
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2021, 29 (01) : 145 - 161
  • [5] Inertial reflected Krasnosel'skii-Mann iteration with applications to monotone inclusion problems
    Izuchukwu, Chinedu
    Shehu, Yekini
    [J]. OPTIMIZATION, 2023,
  • [6] ON THE CONVERGENCE RATE OF THE KRASNOSEL'SKII-MANN ITERATION
    Matsushita, Shin-Ya
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (01) : 162 - 170
  • [7] Inertial Krasnosel'skii-Mann iterative algorithm with step-size parameters involving nonexpansive mappings with applications to solve image restoration problems
    Artsawang, Natthaphon
    Plubtieng, Somyot
    Bagdasar, Ovidiu
    Ungchittrakool, Kasamsuk
    Baiya, Suparat
    Thammasiri, Purit
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2024, 40 (02) : 243 - 261
  • [8] New Acceleration Factors of the Krasnosel'skii-Mann Iteration
    Dong, Yunda
    Sun, Mengdi
    [J]. RESULTS IN MATHEMATICS, 2022, 77 (05)
  • [9] On the Convergence of the Inexact Running Krasnosel'skii-Mann Method
    Dall'Anese, Emiliano
    Simonetto, Andrea
    Bernstein, Andrey
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 613 - 618
  • [10] Multi-step inertial Krasnosel’skiǐ–Mann iteration with new inertial parameters arrays
    Qiao-Li Dong
    Xiao-Huan Li
    Yeol Je Cho
    Themistocles M. Rassias
    [J]. Journal of Fixed Point Theory and Applications, 2021, 23