Inertial reflected Krasnosel'skii-Mann iteration with applications to monotone inclusion problems

被引:0
|
作者
Izuchukwu, Chinedu [1 ]
Shehu, Yekini [2 ]
机构
[1] Univ Witwatersrand, Sch Math, Johannesburg, South Africa
[2] Zhejiang Normal Univ, Sch Math Sci, Jinhua, Peoples R China
关键词
Inertial reflected step; Krasnosel'skii-Mann iteration; weak convergence; operator splitting methods; Hilbert spaces; FORWARD-BACKWARD ALGORITHM; NONEXPANSIVE-MAPPINGS; SPLITTING ALGORITHMS; CONVERGENCE THEOREMS; WEAK-CONVERGENCE; INFINITE FAMILY; OPERATORS;
D O I
10.1080/02331934.2023.2264884
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper studies an inertial reflected method for the approximation of fixed points (assuming existence) of nonexpansive mappings in Hilbert spaces. The proposed method is acombination of Krasnosel'skii-Mann iteration, inertial extrapolation step and reflected step. The aim is to improve and complement various versions of inertial Krasnosel'skii-Manniterations and the recently proposed reflected Krasnosel'skii-Mann iteration in the literature for approximating fixed points of nonexpansive mappings in Hilbert spaces. Some applications to problems of finding zeros of the sum of monotoneoperators are given. Finally, numerical simulations including image restoration problems are performed using standard test examples to show the superiority of our proposed method.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] New inertial factors of the Krasnosel'skii-Mann iteration
    Dong, Yunda
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2021, 29 (01) : 145 - 161
  • [2] ON THE CONVERGENCE RATE OF THE KRASNOSEL'SKII-MANN ITERATION
    Matsushita, Shin-Ya
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (01) : 162 - 170
  • [3] New Acceleration Factors of the Krasnosel'skii-Mann Iteration
    Dong, Yunda
    Sun, Mengdi
    [J]. RESULTS IN MATHEMATICS, 2022, 77 (05)
  • [4] Multi-step inertial Krasnosel'skii-Mann iteration with new inertial parameters arrays
    Dong, Qiao-Li
    Li, Xiao-Huan
    Cho, Yeol Je
    Rassias, Themistocles M.
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2021, 23 (03)
  • [5] Some results about Krasnosel' skii-Mann iteration process
    Afshari, Hojjat
    Aydi, Hassen
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 4852 - 4859
  • [6] MiKM: multi-step inertial Krasnosel'skii-Mann algorithm and its applications
    Dong, Q. L.
    Huang, J. Z.
    Li, X. H.
    Cho, Y. J.
    Rassias, Th. M.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2019, 73 (04) : 801 - 824
  • [7] Inertial Krasnosel'skii-Mann type hybrid algorithms for solving hierarchical fixed point problems
    Dong, Qiao-Li
    Kazmi, K. R.
    Ali, Rehan
    Li, Xiao-Huan
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (02)
  • [8] Multi-step inertial Krasnosel'skii-Mann iteration with new inertial parameters arrays (vol 23, 44, 2021)
    Dong, Qiao-Li
    Li, Xiao-Huan
    Cho, Yeol Je
    Rassias, Themistocles M.
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2021, 23 (04)
  • [9] On the Convergence of the Inexact Running Krasnosel'skii-Mann Method
    Dall'Anese, Emiliano
    Simonetto, Andrea
    Bernstein, Andrey
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 613 - 618
  • [10] 带扰动的Krasnosel’skii-Mann迭代算法
    郑立果
    刘元星
    周海云
    [J]. 河北师范大学学报(自然科学版), 2015, 39 (05) : 383 - 386