Inertial Krasnosel'skii-Mann type hybrid algorithms for solving hierarchical fixed point problems

被引:24
|
作者
Dong, Qiao-Li [1 ]
Kazmi, K. R. [2 ,3 ]
Ali, Rehan [4 ]
Li, Xiao-Huan [1 ]
机构
[1] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
[2] King Abdulaziz Univ, Fac Sci & Arts Rabigh, Dept Math, Jeddah, Saudi Arabia
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[4] Jamia Millia Islamia, Dept Math, New Delhi 110025, India
关键词
Hierarchical fixed point problem; inertial Krasnosel'skii-Mann type hybrid algorithm; nonexpansive mapping; strong convergence; 47H10; 49J35; 90C47; FORWARD-BACKWARD ALGORITHM; STRONG-CONVERGENCE; NONEXPANSIVE-MAPPINGS; MONOTONE-OPERATORS; ITERATIVE METHOD; PROXIMAL METHOD; THEOREMS;
D O I
10.1007/s11784-019-0699-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we suggest two inertial Krasnosel'skii-Mann type hybrid algorithms to approximate a solution of a hierarchical fixed point problem for nonexpansive mappings in Hilbert space. We prove strong convergence theorems for these algorithms and the conditions of the convergence are very weak comparing other algorithms for the hierarchical fixed point problems. Further, we derive some consequences from the main results. Finally, we present two academic numerical examples for comparing these two algorithms with the algorithm in Dong et al. (J Fixed Point Theory A 19(4):3097-3118, 2017), which illustrate the advantage of the proposed algorithms. The methods and results presented in this paper generalize and unify previously known corresponding methods and results of this area.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] KRASNOSEL'SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION
    Wang, Fuli
    Wang, Feng
    [J]. FIXED POINT THEORY, 2012, 13 (01): : 285 - 291
  • [22] A hybrid Krasnosel'skii-Schauder fixed point theorem for systems
    Infante, Gennaro
    Mascali, Giovanni
    Rodriguez-Lopez, Jorge
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 80
  • [23] Krasnosel'skii Type Fixed Point Theorems for Mappings on Nonconvex Sets
    Alghamdi, Maryam A.
    O'Regan, Donal
    Shahzad, Naseer
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [24] Krasnosel’skii type fixed point theorems in ordered Banach spaces
    Boucenna A.
    Djebali S.
    Moussaoui T.
    [J]. Afrika Matematika, 2017, 28 (7-8) : 1115 - 1129
  • [25] A class of expansive-type Krasnosel'skii fixed point theorems
    Xiang, Tian
    Yuan, Rong
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 3229 - 3239
  • [26] On a fixed point theorem of Krasnosel'skii type and application to integral equations
    Ngoc, Le Thi Phuong
    Long, Nguyen Thanh
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2006, 2006 (1)
  • [27] Multivalued versions of a Krasnosel’skii-type fixed point theorem
    John R. Graef
    Johnny Henderson
    Abdelghani Ouahab
    [J]. Journal of Fixed Point Theory and Applications, 2017, 19 : 1059 - 1082
  • [28] Multivalued versions of a Krasnosel'skii-type fixed point theorem
    Graef, John R.
    Henderson, Johnny
    Ouahab, Abdelghani
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (02) : 1059 - 1082
  • [29] Weakly Noncompact Fixed Point Results of the Schauder and the Krasnosel'skii Type
    Taoudi, Mohamed-Aziz
    Xiang, Tian
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (02) : 667 - 685
  • [30] Weakly Noncompact Fixed Point Results of the Schauder and the Krasnosel’skii Type
    Mohamed-Aziz Taoudi
    Tian Xiang
    [J]. Mediterranean Journal of Mathematics, 2014, 11 : 667 - 685