Computational techniques for parameter estimation of gravitational wave signals

被引:5
|
作者
Meyer, Renate [1 ]
Edwards, Matthew C. [1 ]
Maturana-Russel, Patricio [1 ,2 ]
Christensen, Nelson [3 ]
机构
[1] Univ Auckland, Dept Stat, Auckland, New Zealand
[2] Auckland Univ Technol, Dept Math Sci, Auckland, New Zealand
[3] Univ Cote Azur, Observ Cote Azur, Artemis, Nice, France
基金
美国国家科学基金会;
关键词
Bayesian inference; Markov chain Monte Carlo; Nested Sampling; parameter estimation; signal processing; GENERAL-RELATIVITY; NEUTRINO BURST; POWER SPECTRA; RADIATION; LIGO; IDENTIFICATION; INFERENCE; BINARIES; PULSARS;
D O I
10.1002/wics.1532
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Since the very first detection of gravitational waves from the coalescence of two black holes in 2015, Bayesian statistical methods have been routinely applied by LIGO and Virgo to extract the signal out of noisy interferometric measurements, obtain point estimates of the physical parameters responsible for producing the signal, and rigorously quantify their uncertainties. Different computational techniques have been devised depending on the source of the gravitational radiation and the gravitational waveform model used. Prominent sources of gravitational waves are binary black hole or neutron star mergers, the only objects that have been observed by detectors to date. But also gravitational waves from core-collapse supernovae, rapidly rotating neutron stars, and the stochastic gravitational-wave background are in the sensitivity band of the ground-based interferometers and expected to be observable in future observation runs. As nonlinearities of the complex waveforms and the high-dimensional parameter spaces preclude analytic evaluation of the posterior distribution, posterior inference for all these sources relies on computer-intensive simulation techniques such as Markov chain Monte Carlo methods. A review of state-of-the-art Bayesian statistical parameter estimation methods will be given for researchers in this cross-disciplinary area of gravitational wave data analysis. This article is categorized under: Applications of Computational Statistics > Signal and Image Processing and Coding Statistical and Graphical Methods of Data Analysis > Markov Chain Monte Carlo (MCMC) Statistical Models > Time Series Models
引用
收藏
页数:25
相关论文
共 50 条
  • [21] ASTROPHYSICAL PRIOR INFORMATION AND GRAVITATIONAL-WAVE PARAMETER ESTIMATION
    Pankow, Chris
    Sampson, Laura
    Perri, Leah
    Chase, Eve
    Coughlin, Scott
    Zevin, Michael
    Kalogera, Vassiliki
    ASTROPHYSICAL JOURNAL, 2017, 834 (02):
  • [22] Issues of mismodeling gravitational-wave data for parameter estimation
    Edy, Oliver
    Lundgren, Andrew
    Nuttall, Laura K.
    PHYSICAL REVIEW D, 2021, 103 (12)
  • [23] Tempered multifidelity importance sampling for gravitational wave parameter estimation
    Saleh, Bassel
    Zimmerman, Aaron
    Chen, Peng
    Ghattas, Omar
    PHYSICAL REVIEW D, 2024, 110 (10)
  • [24] On the Use of Galaxy Catalogs in Gravitational-wave Parameter Estimation
    Mo, Geoffrey
    Haster, Carl-Johan
    Katsavounidis, Erik
    ASTROPHYSICAL JOURNAL, 2025, 979 (02):
  • [25] Parameter Estimation for Gravitational-wave Bursts with the BayesWave Pipeline
    Becsy, Bence
    Raffai, Peter
    Cornish, Neil J.
    Essick, Reed
    Kanner, Jonah
    Katsavounidis, Erik
    Littenberg, Tyson B.
    Millhouse, Margaret
    Vitale, Salvatore
    ASTROPHYSICAL JOURNAL, 2017, 839 (01):
  • [26] Accelerated Gravitational Wave Parameter Estimation with Reduced Order Modeling
    Canizares, Priscilla
    Field, Scott E.
    Gair, Jonathan
    Raymond, Vivien
    Smith, Rory
    Tiglio, Manuel
    PHYSICAL REVIEW LETTERS, 2015, 114 (07)
  • [27] Fast Gravitational-wave Parameter Estimation without Compromises
    Wong, Kaze W. K.
    Isi, Maximiliano
    Edwards, Thomas D. P.
    ASTROPHYSICAL JOURNAL, 2023, 958 (02):
  • [28] Inadequacies of the Fisher information matrix in gravitational-wave parameter estimation
    Rodriguez, Carl L.
    Farr, Benjamin
    Farr, Will M.
    Mandel, Ilya
    PHYSICAL REVIEW D, 2013, 88 (08):
  • [29] Bayesian parameter estimation for targeted anisotropic gravitational-wave background
    Tsukada, Leo
    Jaraba, Santiago
    Agarwal, Deepali
    Floden, Erik
    PHYSICAL REVIEW D, 2023, 107 (02)
  • [30] Gravitational-wave parameter estimation with autoregressive neural network flows
    Green, Stephen R.
    Simpson, Christine
    Gair, Jonathan
    PHYSICAL REVIEW D, 2020, 102 (10)