Computational techniques for parameter estimation of gravitational wave signals

被引:5
|
作者
Meyer, Renate [1 ]
Edwards, Matthew C. [1 ]
Maturana-Russel, Patricio [1 ,2 ]
Christensen, Nelson [3 ]
机构
[1] Univ Auckland, Dept Stat, Auckland, New Zealand
[2] Auckland Univ Technol, Dept Math Sci, Auckland, New Zealand
[3] Univ Cote Azur, Observ Cote Azur, Artemis, Nice, France
基金
美国国家科学基金会;
关键词
Bayesian inference; Markov chain Monte Carlo; Nested Sampling; parameter estimation; signal processing; GENERAL-RELATIVITY; NEUTRINO BURST; POWER SPECTRA; RADIATION; LIGO; IDENTIFICATION; INFERENCE; BINARIES; PULSARS;
D O I
10.1002/wics.1532
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Since the very first detection of gravitational waves from the coalescence of two black holes in 2015, Bayesian statistical methods have been routinely applied by LIGO and Virgo to extract the signal out of noisy interferometric measurements, obtain point estimates of the physical parameters responsible for producing the signal, and rigorously quantify their uncertainties. Different computational techniques have been devised depending on the source of the gravitational radiation and the gravitational waveform model used. Prominent sources of gravitational waves are binary black hole or neutron star mergers, the only objects that have been observed by detectors to date. But also gravitational waves from core-collapse supernovae, rapidly rotating neutron stars, and the stochastic gravitational-wave background are in the sensitivity band of the ground-based interferometers and expected to be observable in future observation runs. As nonlinearities of the complex waveforms and the high-dimensional parameter spaces preclude analytic evaluation of the posterior distribution, posterior inference for all these sources relies on computer-intensive simulation techniques such as Markov chain Monte Carlo methods. A review of state-of-the-art Bayesian statistical parameter estimation methods will be given for researchers in this cross-disciplinary area of gravitational wave data analysis. This article is categorized under: Applications of Computational Statistics > Signal and Image Processing and Coding Statistical and Graphical Methods of Data Analysis > Markov Chain Monte Carlo (MCMC) Statistical Models > Time Series Models
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Adaptive Parameter Estimation of Cardiovascular Signals using Sequential Bayesian Techniques
    Edla, Shwetha
    Zhang, Jun Jason
    Spanias, John
    Kovvali, Narayan
    Papandreou-Suppappola, Antonia
    Chakrabarti, Chaitali
    2010 CONFERENCE RECORD OF THE FORTY FOURTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2010, : 374 - 378
  • [42] Measurable parameter combinations of environmentally-dephased EMRI gravitational-wave signals
    Rivera, Marco Immanuel B.
    Reyes, Reinabelle C.
    NEW ASTRONOMY, 2024, 112
  • [43] Toward conquering the parameter space of gravitational wave signals from black hole coalescence
    Bruegmann, Bernd
    Gonzalez, Jose
    Hannam, Mark
    Husa, Sascha
    Sperhake, Ulrich
    Christadler, Iris
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING '07, 2008, : 19 - +
  • [44] COMPARISON OF BIASING PARAMETER COMPUTATIONAL TECHNIQUES IN RIDGE-TYPE ESTIMATION
    CICCI, DA
    APPLIED MATHEMATICS AND COMPUTATION, 1993, 53 (2-3) : 111 - 120
  • [45] Parameter estimation of gravitational wave with various time-delay interferometry channels
    Liu, Mengxu
    Gong, Biping
    PHYSICAL REVIEW D, 2023, 108 (12)
  • [46] Fast Bayesian gravitational wave parameter estimation using convolutional neural networks
    Andres-Carcasona, M.
    Martinez, M.
    Mir, Ll M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (02) : 2887 - 2894
  • [47] Parameter estimation method that directly compares gravitational wave observations to numerical relativity
    Lange, J.
    O'Shaughnessy, R.
    Boyle, M.
    Bustillo, J. Calderon
    Campanelli, M.
    Chu, T.
    Clark, J. A.
    Demos, N.
    Fong, H.
    Healy, J.
    Hemberger, D. A.
    Hinder, I.
    Jani, K.
    Khamesra, B.
    Kidder, L. E.
    Kumar, P.
    Laguna, P.
    Lousto, C. O.
    Lovelace, G.
    Ossokine, S.
    Pfeiffer, H.
    Scheel, M. A.
    Shoemaker, D. M.
    Szilagyi, B.
    Teukolsky, S.
    Zlochower, Y.
    PHYSICAL REVIEW D, 2017, 96 (10)
  • [48] An architecture for efficient gravitational wave parameter estimation with multimodal linear surrogate models
    O'Shaughnessy, Richard
    Blackman, Jonathan
    Field, Scott E.
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (14)
  • [49] Parameter estimation for tests of general relativity with the astrophysical stochastic gravitational wave background
    Saffer, Alexander
    Yagi, Kent
    PHYSICAL REVIEW D, 2020, 102 (02)
  • [50] Fast detection and automatic parameter estimation of a gravitational wave signal with a novel method
    Wang, Yan
    GENERAL RELATIVITY AND GRAVITATION, 2015, 47 (12) : 1 - 11