Computational techniques for parameter estimation of gravitational wave signals

被引:5
|
作者
Meyer, Renate [1 ]
Edwards, Matthew C. [1 ]
Maturana-Russel, Patricio [1 ,2 ]
Christensen, Nelson [3 ]
机构
[1] Univ Auckland, Dept Stat, Auckland, New Zealand
[2] Auckland Univ Technol, Dept Math Sci, Auckland, New Zealand
[3] Univ Cote Azur, Observ Cote Azur, Artemis, Nice, France
基金
美国国家科学基金会;
关键词
Bayesian inference; Markov chain Monte Carlo; Nested Sampling; parameter estimation; signal processing; GENERAL-RELATIVITY; NEUTRINO BURST; POWER SPECTRA; RADIATION; LIGO; IDENTIFICATION; INFERENCE; BINARIES; PULSARS;
D O I
10.1002/wics.1532
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Since the very first detection of gravitational waves from the coalescence of two black holes in 2015, Bayesian statistical methods have been routinely applied by LIGO and Virgo to extract the signal out of noisy interferometric measurements, obtain point estimates of the physical parameters responsible for producing the signal, and rigorously quantify their uncertainties. Different computational techniques have been devised depending on the source of the gravitational radiation and the gravitational waveform model used. Prominent sources of gravitational waves are binary black hole or neutron star mergers, the only objects that have been observed by detectors to date. But also gravitational waves from core-collapse supernovae, rapidly rotating neutron stars, and the stochastic gravitational-wave background are in the sensitivity band of the ground-based interferometers and expected to be observable in future observation runs. As nonlinearities of the complex waveforms and the high-dimensional parameter spaces preclude analytic evaluation of the posterior distribution, posterior inference for all these sources relies on computer-intensive simulation techniques such as Markov chain Monte Carlo methods. A review of state-of-the-art Bayesian statistical parameter estimation methods will be given for researchers in this cross-disciplinary area of gravitational wave data analysis. This article is categorized under: Applications of Computational Statistics > Signal and Image Processing and Coding Statistical and Graphical Methods of Data Analysis > Markov Chain Monte Carlo (MCMC) Statistical Models > Time Series Models
引用
收藏
页数:25
相关论文
共 50 条
  • [31] How serious can the stealth bias be in gravitational wave parameter estimation?
    Vitale, Salvatore
    Del Pozzo, Walter
    PHYSICAL REVIEW D, 2014, 89 (02):
  • [32] Conditional noise deep learning for parameter estimation of gravitational wave events
    Kuo, Han-Shiang
    Lin, Feng-Li
    PHYSICAL REVIEW D, 2022, 105 (04)
  • [33] Parameter estimation of gravitational wave echoes from exotic compact objects
    Maselli, Andrea
    Voelkel, Sebastian H.
    Kokkotas, Kostas D.
    PHYSICAL REVIEW D, 2017, 96 (06)
  • [34] Statistically-informed deep learning for gravitational wave parameter estimation
    Shen, Hongyu
    Huerta, E. A.
    O'Shea, Eamonn
    Kumar, Prayush
    Zhao, Zhizhen
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2022, 3 (01):
  • [35] Multiband gravitational-wave parameter estimation: A study of future detectors
    Grimm, Stefan
    Harms, Jan
    PHYSICAL REVIEW D, 2020, 102 (02)
  • [36] Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era
    Vitale, Salvatore
    Del Pozzo, Walter
    Li, Tjonnie G. F.
    Van Den Broeck, Chris
    Mandel, Ilya
    Aylott, Ben
    Veitch, John
    PHYSICAL REVIEW D, 2012, 85 (06):
  • [37] Parameter estimation with gravitational waves
    Christensen, Nelson
    Meyer, Renate
    REVIEWS OF MODERN PHYSICS, 2022, 94 (02)
  • [38] Gravitational parameter estimation in a waveguide
    Doukas, Jason
    Westwood, Luke
    Faccio, Daniele
    Di Falco, Andrea
    Fuentes, Ivette
    PHYSICAL REVIEW D, 2014, 90 (02)
  • [39] Rapid gravitational wave parameter estimation with a single spin: Systematic uncertainties in parameter estimation with the SpinTaylorF2 approximation
    Miller, B.
    O'Shaughnessy, R.
    Littenberg, T. B.
    Farr, B.
    PHYSICAL REVIEW D, 2015, 92 (04)
  • [40] PARAMETER-ESTIMATION OF RANDOM FH SIGNALS USING AUTOCORRELATION TECHNIQUES
    CHUNG, CD
    POLYDOROS, A
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1995, 43 (2-4) : 1097 - 1106