Issues of mismodeling gravitational-wave data for parameter estimation

被引:11
|
作者
Edy, Oliver [1 ]
Lundgren, Andrew [1 ]
Nuttall, Laura K. [1 ]
机构
[1] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England
基金
美国国家科学基金会;
关键词
BAYESIAN-INFERENCE; SPECTRUM;
D O I
10.1103/PhysRevD.103.124061
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Bayesian inference is used to extract unknown parameters from gravitational-wave signals. Detector noise is typically modeled as stationary, although data from the LIGO and Virgo detectors is not stationary. We demonstrate that the posterior of estimated waveform parameters is no longer valid under the assumption of stationarity. We show that while the posterior is unbiased, the errors will be under- or overestimated compared to the true posterior. A formalism was developed to measure the effect of the mismodeling, and found the effect of any form of nonstationarity has an effect on the results, but are not significant in certain circumstances. We demonstrate the effect of short-duration Gaussian noise bursts and persistent oscillatory modulation of the noise on binary-black-hole-like signals. In the case of short signals, nonstationarity in the data does not have a large effect on the parameter estimation, but the errors from nonstationary data containing signals lasting tens of seconds or longer will be several times worse than if the noise was stationary. Accounting for this limiting factor in parameter sensitivity could be very important for achieving accurate astronomical results. This methodology for handling the nonstationarity will also be invaluable for analysis of waveforms that last minutes or longer, such as those we expect to see with the Einstein Telescope.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Mismodeling in gravitational-wave astronomy: The trouble with templates
    Sampson, Laura
    Cornish, Neil
    Yunes, Nicolas
    PHYSICAL REVIEW D, 2014, 89 (06):
  • [2] Stealth bias in gravitational-wave parameter estimation
    Vallisneri, Michele
    Yunes, Nicolas
    PHYSICAL REVIEW D, 2013, 87 (10):
  • [3] Gravitational-wave parameter estimation with gaps in LISA: A Bayesian data augmentation method
    Baghi, Quentin
    Thorpe, James Ira
    Slutsky, Jacob
    Baker, John
    Dal Canton, Tito
    Korsakova, Natalia
    Karnesis, Nikos
    PHYSICAL REVIEW D, 2019, 100 (02)
  • [4] ASTROPHYSICAL PRIOR INFORMATION AND GRAVITATIONAL-WAVE PARAMETER ESTIMATION
    Pankow, Chris
    Sampson, Laura
    Perri, Leah
    Chase, Eve
    Coughlin, Scott
    Zevin, Michael
    Kalogera, Vassiliki
    ASTROPHYSICAL JOURNAL, 2017, 834 (02):
  • [5] Fast Gravitational-wave Parameter Estimation without Compromises
    Wong, Kaze W. K.
    Isi, Maximiliano
    Edwards, Thomas D. P.
    ASTROPHYSICAL JOURNAL, 2023, 958 (02):
  • [6] Parameter Estimation for Gravitational-wave Bursts with the BayesWave Pipeline
    Becsy, Bence
    Raffai, Peter
    Cornish, Neil J.
    Essick, Reed
    Kanner, Jonah
    Katsavounidis, Erik
    Littenberg, Tyson B.
    Millhouse, Margaret
    Vitale, Salvatore
    ASTROPHYSICAL JOURNAL, 2017, 839 (01):
  • [7] Parameter Estimation in Searches for the Stochastic Gravitational-Wave Background
    Mandic, V.
    Thrane, E.
    Giampanis, S.
    Regimbau, T.
    PHYSICAL REVIEW LETTERS, 2012, 109 (17)
  • [8] Bayesian parameter estimation for targeted anisotropic gravitational-wave background
    Tsukada, Leo
    Jaraba, Santiago
    Agarwal, Deepali
    Floden, Erik
    PHYSICAL REVIEW D, 2023, 107 (02)
  • [9] Gravitational-wave parameter estimation with autoregressive neural network flows
    Green, Stephen R.
    Simpson, Christine
    Gair, Jonathan
    PHYSICAL REVIEW D, 2020, 102 (10)
  • [10] Multiband gravitational-wave parameter estimation: A study of future detectors
    Grimm, Stefan
    Harms, Jan
    PHYSICAL REVIEW D, 2020, 102 (02)