Issues of mismodeling gravitational-wave data for parameter estimation

被引:11
|
作者
Edy, Oliver [1 ]
Lundgren, Andrew [1 ]
Nuttall, Laura K. [1 ]
机构
[1] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England
基金
美国国家科学基金会;
关键词
BAYESIAN-INFERENCE; SPECTRUM;
D O I
10.1103/PhysRevD.103.124061
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Bayesian inference is used to extract unknown parameters from gravitational-wave signals. Detector noise is typically modeled as stationary, although data from the LIGO and Virgo detectors is not stationary. We demonstrate that the posterior of estimated waveform parameters is no longer valid under the assumption of stationarity. We show that while the posterior is unbiased, the errors will be under- or overestimated compared to the true posterior. A formalism was developed to measure the effect of the mismodeling, and found the effect of any form of nonstationarity has an effect on the results, but are not significant in certain circumstances. We demonstrate the effect of short-duration Gaussian noise bursts and persistent oscillatory modulation of the noise on binary-black-hole-like signals. In the case of short signals, nonstationarity in the data does not have a large effect on the parameter estimation, but the errors from nonstationary data containing signals lasting tens of seconds or longer will be several times worse than if the noise was stationary. Accounting for this limiting factor in parameter sensitivity could be very important for achieving accurate astronomical results. This methodology for handling the nonstationarity will also be invaluable for analysis of waveforms that last minutes or longer, such as those we expect to see with the Einstein Telescope.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects
    Vallisneri, Michele
    PHYSICAL REVIEW D, 2008, 77 (04):
  • [32] Forecast for cosmological parameter estimation with gravitational-wave standard siren observation from the Cosmic Explorer
    Jin, Shang-Jie
    He, Dong-Ze
    Xu, Yidong
    Zhang, Jing-Fei
    Zhang, Xin
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (03):
  • [33] Algorithms for data analysis in gravitational-wave experiments
    V. N. Rudenko
    Astronomy Reports, 2001, 45 : 984 - 994
  • [34] GWFISH: A simulation software to evaluate parameter-estimation capabilities of gravitational-wave detector networks
    Dupletsa, U.
    Harms, J.
    Banerjee, B.
    Branchesi, M.
    Goncharov, B.
    Maselli, A.
    Oliveira, A. C. S.
    Ronchini, S.
    Tissino, J.
    ASTRONOMY AND COMPUTING, 2023, 42
  • [35] Using electromagnetic observations to aid gravitational-wave parameter estimation of compact binaries observed with LISA
    Shah, S.
    van der Sluys, M.
    Nelemans, G.
    ASTRONOMY & ASTROPHYSICS, 2012, 544
  • [36] Parameter estimation for binary black holes with networks of third-generation gravitational-wave detectors
    Vitale, Salvatore
    Evans, Matthew
    PHYSICAL REVIEW D, 2017, 95 (06)
  • [37] Gravitational-wave Detection and Parameter Estimation for Accreting Black-hole Binaries and Their Electromagnetic Counterpart
    Caputo, Andrea
    Sberna, Laura
    Toubiana, Alexandre
    Babak, Stanislav
    Barausse, Enrico
    Marsat, Sylvain
    Pani, Paolo
    ASTROPHYSICAL JOURNAL, 2020, 892 (02):
  • [38] Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network
    Aasi, J.
    Abadie, J.
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M.
    Accadia, T.
    Acernese, F.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Ceron, E. Amador
    Amariutei, D.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Ast, S.
    Aston, S. M.
    Astone, P.
    Atkinson, D.
    Aufmuth, P.
    Aulbert, C.
    Aylott, B. E.
    Babak, S.
    Baker, P.
    Ballardin, G.
    Ballmer, S.
    Bao, Y.
    Barayoga, J. C. B.
    Barker, D.
    Barone, F.
    Barr, B.
    Barsotti, L.
    Barsuglia, M.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Bastarrika, M.
    Basti, A.
    Batch, J.
    Bauchrowitz, J.
    Bauer, Th. S.
    PHYSICAL REVIEW D, 2013, 88 (06)
  • [39] An introduction to Bayesian inference in gravitational-wave astronomy: Parameter estimation, model selection, and hierarchical models
    Thrane, Eric
    Talbot, Colm
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2019, 36
  • [40] Algorithms for data analysis in gravitational-wave experiments
    Rudenko, VN
    ASTRONOMY REPORTS, 2001, 45 (12) : 984 - 994