Brain Tumor Segmentation and Survival Prediction Using Patch Based Modified 3D U-Net

被引:5
|
作者
Parmar, Bhavesh [1 ,2 ]
Parikh, Mehul [1 ,2 ]
机构
[1] Gujarat Technol Univ, Ahmadabad, Gujarat, India
[2] LD Coll Engn, Ahmadabad, Gujarat, India
关键词
Brain tumor segmentation; Deep learning; Survival prediction; Uncertainty; Medical imaging; MRI;
D O I
10.1007/978-3-030-72087-2_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain tumor segmentation is a vital clinical requirement. In recent years, the developments of the prevalence of deep learning in medical image processing have been experienced. Automated brain tumor segmentation can reduce the diagnosis time and increase the potential of clinical intervention. In this work, we have used a patch selection methodology based on modified U-Net deep learning architecture with appropriate normalization and patch selection methods for the brain tumor segmentation task in BraTS 2020 challenge. Two-phase network training was implemented with patch selection methods. The performance of our deep learning-based brain tumor segmentation approach was done on CBICA's Image Processing Portal. We achieved a Dice score of 0.795, 0.886, 0.827 in the testing phase, for the enhancing tumor, whole tumor, and tumor core respectively. The segmentation outcome with various radiomic features was used for Overall survival (OS) prediction. For OS prediction we achieved an accuracy of 0.570 for the testing phase. The algorithm can further be improved for tumor inter-class segmentation and OS prediction with various network implementation strategies. As the OS prediction results are based on segmentation, there is a scope of improvement in the segmentation and OS prediction thereby.
引用
收藏
页码:398 / 409
页数:12
相关论文
共 50 条
  • [41] Automatic multilabel aorta segmentation in PET/CT using a modified 3D U-Net
    Van Praagh, G.
    Nienhuis, P. H.
    Reijrink, M.
    Davidse, M. E. J.
    Spottiswoode, B. S.
    Gao, F.
    Prakken, N. H. J.
    Wolterink, J. M.
    Mouridsen, K.
    Sinha, B.
    Borra, R. J. H.
    Slart, R. H. J.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S285 - S285
  • [42] Brain tumor segmentation using U-Net in conjunction with EfficientNet
    Lin, Shu-You
    Lin, Chun-Ling
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [43] Brain tumor segmentation and classification using optimized U-Net
    Shiny, K., V
    IMAGING SCIENCE JOURNAL, 2024, 72 (02): : 204 - 219
  • [44] BRAIN TUMOR SEGMENTATION AND CLASSIFICATION USING OPTIMIZED U-NET
    Shiny, K. V.
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2024, 24 (01)
  • [45] Tuning U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2022, 2023, 13769 : 162 - 173
  • [46] Optimized U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Milesi, Alexandre
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 15 - 29
  • [47] Edge U-Net: Brain tumor segmentation using MRI based on deep U-Net model with boundary information
    Allah, Ahmed M. Gab
    Sarhan, Amany M.
    Elshennawy, Nada M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [48] Brain Tumor Segmentation Using U-Net Based Deep Neural Networks
    Hai Thanh Le
    Hien Thi-Thu Pham
    7TH INTERNATIONAL CONFERENCE ON THE DEVELOPMENT OF BIOMEDICAL ENGINEERING IN VIETNAM (BME7): TRANSLATIONAL HEALTH SCIENCE AND TECHNOLOGY FOR DEVELOPING COUNTRIES, 2020, 69 : 39 - 42
  • [49] MRI Brain Tumor Segmentation Using 3D U-Net with Dense Encoder Blocks and Residual Decoder Blocks
    Tie, Juhong
    Peng, Hui
    Zhou, Jiliu
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 128 (02): : 427 - 445
  • [50] CHOROID PLEXUS SEGMENTATION USING OPTIMIZED 3D U-NET
    Zhao, Li
    Feng, Xue
    Meyer, Craig H.
    Alsop, David C.
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 381 - 384