Brain Tumor Segmentation and Survival Prediction Using Patch Based Modified 3D U-Net

被引:5
|
作者
Parmar, Bhavesh [1 ,2 ]
Parikh, Mehul [1 ,2 ]
机构
[1] Gujarat Technol Univ, Ahmadabad, Gujarat, India
[2] LD Coll Engn, Ahmadabad, Gujarat, India
关键词
Brain tumor segmentation; Deep learning; Survival prediction; Uncertainty; Medical imaging; MRI;
D O I
10.1007/978-3-030-72087-2_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain tumor segmentation is a vital clinical requirement. In recent years, the developments of the prevalence of deep learning in medical image processing have been experienced. Automated brain tumor segmentation can reduce the diagnosis time and increase the potential of clinical intervention. In this work, we have used a patch selection methodology based on modified U-Net deep learning architecture with appropriate normalization and patch selection methods for the brain tumor segmentation task in BraTS 2020 challenge. Two-phase network training was implemented with patch selection methods. The performance of our deep learning-based brain tumor segmentation approach was done on CBICA's Image Processing Portal. We achieved a Dice score of 0.795, 0.886, 0.827 in the testing phase, for the enhancing tumor, whole tumor, and tumor core respectively. The segmentation outcome with various radiomic features was used for Overall survival (OS) prediction. For OS prediction we achieved an accuracy of 0.570 for the testing phase. The algorithm can further be improved for tumor inter-class segmentation and OS prediction with various network implementation strategies. As the OS prediction results are based on segmentation, there is a scope of improvement in the segmentation and OS prediction thereby.
引用
收藏
页码:398 / 409
页数:12
相关论文
共 50 条
  • [31] Automatic segmentation of nonhuman primate brain structures using 3D U-net
    Li, C.
    Zugaro, A. Galli
    Carr, Z.
    Korszen, S.
    Smith, G.
    Stigall, J.
    Salegio, E. A.
    Zagorchev, L.
    HUMAN GENE THERAPY, 2024, 35 (3-4) : A192 - A193
  • [32] MRI Brain Tumor Segmentation Using a 2D-3D U-Net Ensemble
    Marti Asenjo, Jaime
    Martinez-Larraz Solis, Alfonso
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 354 - 366
  • [33] Automatic Segmentation of Brain Tumor from 3D MR Images Using SegNet, U-Net, and PSP-Net
    Weng, Yan-Ting
    Chan, Hsiang-Wei
    Huang, Teng-Yi
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 226 - 233
  • [34] SCAU-net: 3D self-calibrated attention U-Net for brain tumor segmentation
    Liu, Dongwei
    Sheng, Ning
    Han, Yutong
    Hou, Yaqing
    Liu, Bin
    Zhang, Jianxin
    Zhang, Qiang
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (33): : 23973 - 23985
  • [35] dResU-Net: 3D deep residual U-Net based brain tumor segmentation from multimodal MRI
    Raza, Rehan
    Bajwa, Usama Ijaz
    Mehmood, Yasar
    Anwar, Muhammad Waqas
    Jamal, M. Hassan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [37] SCAU-net: 3D self-calibrated attention U-Net for brain tumor segmentation
    Dongwei Liu
    Ning Sheng
    Yutong Han
    Yaqing Hou
    Bin Liu
    Jianxin Zhang
    Qiang Zhang
    Neural Computing and Applications, 2023, 35 : 23973 - 23985
  • [38] Improved Brain Tumor Segmentation in MR Images with a Modified U-Net
    Alquran, Hiam
    Alslatie, Mohammed
    Rababah, Ali
    Mustafa, Wan Azani
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [39] Glioma segmentation of optimized 3D U-net and prediction of multi-modal survival time
    Qihong Liu
    Kai Liu
    Antonio Bolufé-Röhler
    Jing Cai
    Ling He
    Neural Computing and Applications, 2022, 34 : 211 - 225
  • [40] Glioma segmentation of optimized 3D U-net and prediction of multi-modal survival time
    Liu, Qihong
    Liu, Kai
    Bolufe-Rohler, Antonio
    Cai, Jing
    He, Ling
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (01): : 211 - 225