Brain Tumor Segmentation and Survival Prediction Using Patch Based Modified 3D U-Net

被引:5
|
作者
Parmar, Bhavesh [1 ,2 ]
Parikh, Mehul [1 ,2 ]
机构
[1] Gujarat Technol Univ, Ahmadabad, Gujarat, India
[2] LD Coll Engn, Ahmadabad, Gujarat, India
关键词
Brain tumor segmentation; Deep learning; Survival prediction; Uncertainty; Medical imaging; MRI;
D O I
10.1007/978-3-030-72087-2_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain tumor segmentation is a vital clinical requirement. In recent years, the developments of the prevalence of deep learning in medical image processing have been experienced. Automated brain tumor segmentation can reduce the diagnosis time and increase the potential of clinical intervention. In this work, we have used a patch selection methodology based on modified U-Net deep learning architecture with appropriate normalization and patch selection methods for the brain tumor segmentation task in BraTS 2020 challenge. Two-phase network training was implemented with patch selection methods. The performance of our deep learning-based brain tumor segmentation approach was done on CBICA's Image Processing Portal. We achieved a Dice score of 0.795, 0.886, 0.827 in the testing phase, for the enhancing tumor, whole tumor, and tumor core respectively. The segmentation outcome with various radiomic features was used for Overall survival (OS) prediction. For OS prediction we achieved an accuracy of 0.570 for the testing phase. The algorithm can further be improved for tumor inter-class segmentation and OS prediction with various network implementation strategies. As the OS prediction results are based on segmentation, there is a scope of improvement in the segmentation and OS prediction thereby.
引用
收藏
页码:398 / 409
页数:12
相关论文
共 50 条
  • [21] S3D-UNet: Separable 3D U-Net for Brain Tumor Segmentation
    Chen, Wei
    Liu, Boqiang
    Peng, Suting
    Sun, Jiawei
    Qiao, Xu
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 358 - 368
  • [22] 3D U-Net-Based Brain Tumor Semantic Segmentation Using a Modified Data Generator
    Kumar, Dinesh
    Sethi, Dimple
    Kussa, Wagaye Tadele
    Dana, Yeabsira Mengistu
    Kag, Hitesh
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2025, 35 (02)
  • [23] Modified U-Net for Automatic Brain Tumor Regions Segmentation
    Kaewrak, Keerati
    Soraghan, John
    Di Caterina, Gaetano
    Grose, Derek
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [24] Brain Tumor Segmentation in MRI Images Using A Modified U-Net Model
    Vo, Thong
    Dave, Pranjal
    Bajpai, Gaurav
    Kashef, Rasha
    Khan, Naimul
    2022 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH (IEEE ICDH 2022), 2022, : 29 - 33
  • [25] Joint Learning of Segmentation and Overall Survival for Brain Tumor based on U-Net
    Kwon, Junmo
    Park, Hyunjin
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 925 - 926
  • [26] An automatic brain tumor segmentation using modified inception module based U-Net model
    Kumar, K. Sambath
    Rajendran, A.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (03) : 2743 - 2754
  • [27] 3D Neuron Segmentation Based on 3D DSAC U-Net
    Guilin University of Electronic Technology, School of Computer Science and Information Security, Guilin
    541004, China
    不详
    514000, China
    不详
    541004, China
    不详
    541004, China
    Proc. - Int. Conf. Digit. Home, ICDH, (322-326):
  • [28] Medical Image Segmentation Based on 3D U-net
    Chen, Silu
    Hu, Guanghao
    Sun, Jun
    2020 19TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS ENGINEERING AND SCIENCE (DCABES 2020), 2020, : 130 - 133
  • [29] Attention 3D U-Net with Multiple Skip Connections for Segmentation of Brain Tumor Images
    Nodirov, Jakhongir
    Abdusalomov, Akmalbek Bobomirzaevich
    Whangbo, Taeg Keun
    SENSORS, 2022, 22 (17)
  • [30] Brain Tumor Segmentation Using Dual-Path Attention U-Net in 3D MRI Images
    Jun, Wen
    Xu, Haoxiang
    Wang, Zhang
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 183 - 193