Edge U-Net: Brain tumor segmentation using MRI based on deep U-Net model with boundary information

被引:69
|
作者
Allah, Ahmed M. Gab [1 ]
Sarhan, Amany M. [2 ]
Elshennawy, Nada M. [2 ]
机构
[1] Univ Sadat City, Fac Comp & Artificial Intelligence, Dept Informat Syst, Sadat City, Egypt
[2] Tanta Univ, Fac Engn, Dept Comp & Control Engn, Tanta, Egypt
关键词
Brain tumor segmentation; Boundary information; Convolutional neural network; MRI; Deep learning; Contrast limited adaptive histogram; equalisation; PERFORMANCE;
D O I
10.1016/j.eswa.2022.118833
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Blood clots in the brain are frequently caused by brain tumors. Early detection of these clots has the potential to significantly lower morbidity and mortality in cases of brain cancer. It is thus indispensable for a proper brain tumor diagnosis and treatment that tumor tissue magnetic resonance images (MRI) be accurately segmented. Several deep learning approaches to the segmentation of brain tumor MRIs have been proposed, each having been designed to properly map out 'boundaries' and thus achieve highly accurate segmentation. This study introduces a deep convolution neural network (DCNN), named the Edge U-Net model, built as an encoder -decoder structure inspired by the U-Net architecture. The Edge U-Net model can more precisely localise tu-mors by merging boundary-related MRI data with the main data from brain MRIs. In the decoder phase, boundary-related information from original MRIs of different scales is integrated with the appropriate adjacent contextual information. A novel loss function was added to this segmentation model to improve performance. This loss function is enhanced with boundary information, allowing the learning process to produce more precise results. In the conducted experiments, a public dataset with 3064 T1-Weighted Contrast Enhancement (T1-CE) images of three well-known brain tumor types were used. The experiment demonstrated that the proposed framework achieved satisfactory Dice score values compared with state-of-art models, with highly accurate differentiation of brain tissues. It achieved Dice scores of 88.8 % for meningioma, 91.76 % for glioma, and 87.28 % for pituitary tumors. Computations of other performance metrics such as the Jaccard index, sensitivity, and specificity were also conducted. According to the results, the Edge U-Net model is a potential diagnostic tool that can be used to help radiologists more precisely segment brain tumor tissue images.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Brain Tumor Segmentation in MRI Images Using A Modified U-Net Model
    Vo, Thong
    Dave, Pranjal
    Bajpai, Gaurav
    Kashef, Rasha
    Khan, Naimul
    2022 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH (IEEE ICDH 2022), 2022, : 29 - 33
  • [2] Brain Tumor Segmentation Using U-Net and Edge Contour Enhancement
    Ho, Te-Wei
    Qi, Huan
    Lai, Feipei
    Xiao, Fu-Ren
    Wu, Jin-Ming
    2019 3RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (ICDSP 2019), 2019, : 75 - 79
  • [3] MRI Brain tumor segmentation and classification with improved U-Net model
    Kusuma P.V.
    Reddy S.C.M.
    Multimedia Tools and Applications, 2025, 84 (4) : 1671 - 1696
  • [4] An MRI brain tumor segmentation method based on improved U-Net
    Zhu, Jiajun
    Zhang, Rui
    Zhang, Haifei
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 778 - 791
  • [5] Brain Tumor Segmentation Using U-Net Based Deep Neural Networks
    Hai Thanh Le
    Hien Thi-Thu Pham
    7TH INTERNATIONAL CONFERENCE ON THE DEVELOPMENT OF BIOMEDICAL ENGINEERING IN VIETNAM (BME7): TRANSLATIONAL HEALTH SCIENCE AND TECHNOLOGY FOR DEVELOPING COUNTRIES, 2020, 69 : 39 - 42
  • [6] Improving brain tumor segmentation on MRI based on the deep U-net and residual units
    Yang, Tiejun
    Song, Jikun
    Li, Lei
    Tang, Qi
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2020, 28 (01) : 95 - 110
  • [7] MVP U-Net: Multi-View Pointwise U-Net for Brain Tumor Segmentation
    Zhao, Changchen
    Zhao, Zhiming
    Zeng, Qingrun
    Feng, Yuanjing
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 93 - 103
  • [8] Tuning U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2022, 2023, 13769 : 162 - 173
  • [9] Optimized U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Milesi, Alexandre
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 15 - 29
  • [10] Semantic Segmentation of Brain MRI Based on U-net Network and Edge Loss
    Wang, Zude
    Zhang, Leixin
    2020 19TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS ENGINEERING AND SCIENCE (DCABES 2020), 2020, : 154 - 157