Gaussian Process Regression for Structured Data Sets

被引:14
|
作者
Belyaev, Mikhail [1 ,2 ,3 ]
Burnaev, Evgeny [1 ,2 ,3 ]
Kapushev, Yermek [1 ,2 ]
机构
[1] Inst Informat Transmiss Problems, Moscow 127994, Russia
[2] DATADVANCE Llc, Moscow 109028, Russia
[3] MIPT, PreMoLab, Dolgoprudnyi 141700, Russia
来源
关键词
Gaussian process; Structured data; Regularization;
D O I
10.1007/978-3-319-17091-6_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Approximation algorithms are widely used in many engineering problems. To obtain a data set for approximation a factorial design of experiments is often used. In such case the size of the data set can be very large. Therefore, one of the most popular algorithms for approximation - Gaussian Process regression - can hardly be applied due to its computational complexity. In this paper a new approach for a Gaussian Process regression in case of a factorial design of experiments is proposed. It allows to efficiently compute exact inference and handle large multidimensional and anisotropic data sets.
引用
收藏
页码:106 / 115
页数:10
相关论文
共 50 条
  • [41] Probabilistic reconstruction for spatiotemporal sensor data integrated with Gaussian process regression
    Ma, Yafei
    He, Yu
    Wang, Lei
    Zhang, Jianren
    PROBABILISTIC ENGINEERING MECHANICS, 2022, 69
  • [42] Structured Low-Rank Matrix Approximation in Gaussian Process Regression for Autonomous Robot Navigation
    Kim, Eunwoo
    Choi, Sungjoon
    Oh, Songhwai
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 69 - 74
  • [43] Gaussian Process Regression Model in Spatial Logistic Regression
    Sofro, A.
    Oktaviarina, A.
    MATHEMATICS, INFORMATICS, SCIENCE AND EDUCATION INTERNATIONAL CONFERENCE (MISEIC), 2018, 947
  • [44] Gaussian process regression bootstrapping: exploring the effects of uncertainty in time course data
    Kirk, Paul D. W.
    Stumpf, Michael P. H.
    BIOINFORMATICS, 2009, 25 (10) : 1300 - 1306
  • [45] Distributed robust Gaussian Process regression
    Sebastian Mair
    Ulf Brefeld
    Knowledge and Information Systems, 2018, 55 : 415 - 435
  • [46] Sparse Additive Gaussian Process Regression
    Luo, Hengrui
    Nattino, Giovanni
    Pratola, Matthew T.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [47] The extended skew Gaussian process for regression
    Alodat M.T.
    Al-Rawwash M.Y.
    METRON, 2014, 72 (3) : 317 - 330
  • [48] Gaussian Process Regression for Array Interpolation
    Gupta, Arjun
    Christodoulou, Christos G.
    Martinez-Ramon, Manel
    Luis Rojo-Alvarez, Jose
    2019 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND USNC-URSI RADIO SCIENCE MEETING, 2019, : 1433 - 1434
  • [49] Projection pursuit Gaussian process regression
    Chen, Gecheng
    Tuo, Rui
    IISE TRANSACTIONS, 2023, 55 (09) : 901 - 911
  • [50] Gaussian process regression for geometry optimization
    Denzel, Alexander
    Kaestner, Johannes
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (09):