The extended skew Gaussian process for regression

被引:4
|
作者
Alodat M.T. [1 ]
Al-Rawwash M.Y. [2 ]
机构
[1] Department of Mathematics, Statistics and Physics, Qatar University, Doha
[2] Department of Mathematics, University of Sharjah, Sharjah
关键词
Extended skew normal distribution; Gaussian process for regression;
D O I
10.1007/s40300-014-0046-z
中图分类号
学科分类号
摘要
In this article, we propose a generalization to the Gaussian process regression(GPR) model called the extended skew Gaussian process for regression (ESGP) model. The ESGP model works better than the GPR model when the errors are skewed. We derive the predictive distribution for the ESGP model at a new input. Also we apply the ESGP model to FOREX data and we find that it fits the Forex data better than the GPR model. © 2014 Sapienza Università di Roma.
引用
收藏
页码:317 / 330
页数:13
相关论文
共 50 条
  • [1] Skew Gaussian Process for Nonlinear Regression
    Alodat, M. T.
    Al-Momani, E. Y.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (23) : 4936 - 4961
  • [3] Tracking-by-Fusion via Gaussian Process Regression Extended to Transfer Learning
    Gao, Jin
    Wang, Qiang
    Xing, Junliang
    Ling, Haibin
    Hu, Weiming
    Maybank, Stephen
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (04) : 939 - 955
  • [4] An Extended Kalman Filter for Magnetic Field SLAM Using Gaussian Process Regression
    Viset, Frida
    Helmons, Rudy
    Kok, Manon
    [J]. SENSORS, 2022, 22 (08)
  • [5] Neuronal Gaussian Process Regression
    Friedrich, Johannes
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [6] RECURSIVE GAUSSIAN PROCESS REGRESSION
    Huber, Marco F.
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3362 - 3366
  • [7] A Gaussian process robust regression
    Murata, N
    Kuroda, Y
    [J]. PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2005, (157): : 280 - 283
  • [8] Bagging for Gaussian process regression
    Chen, Tao
    Ren, Jianghong
    [J]. NEUROCOMPUTING, 2009, 72 (7-9) : 1605 - 1610
  • [9] Hierarchical Gaussian Process Regression
    Park, Sunho
    Choi, Seungjin
    [J]. PROCEEDINGS OF 2ND ASIAN CONFERENCE ON MACHINE LEARNING (ACML2010), 2010, 13 : 95 - 110
  • [10] BOUNDED GAUSSIAN PROCESS REGRESSION
    Jensen, Bjorn Sand
    Nielsen, Jens Brehm
    Larsen, Jan
    [J]. 2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2013,